From 1 - 2 / 2
  • From the parent record held in the GCMD: The data sets in the CDC archive called "Reynolds SST' and "Reconstructed Reynolds SST" were discontinued on 1 April 2003. A new OI SST data set is available as described here, which includes a new analysis for the historical data and updates into the future. NCEP will not provide new data for the "Reynolds SST" after December 2002 and CDC will remove the "Reynolds SST" data set on 1 April 2003. TO SEE THE NEW DATASET, PLEASE SEARCH THE GLOBAL CHANGE MASTER DIRECTORY FOR MORE INFORMATION. REFER TO THE METADATA RECORD (LINKED BELOW): REYNOLDS_SST ############# This metadata record is a modified child record of an original parent record registered at the Global Change Master Directory. (The Entry ID of the parent record is REYNOLDS_SST, and can be found on the GCMD website - see the provided URL). The data described here are a subset of the original dataset. This metadata record has been created for the express use of Australian Government Antarctic Division employees. Reproduced from: http://www.emc.ncep.noaa.gov/research/cmb/sst_analysis/ Analysis Description and Recent Reanalysis The optimum interpolation (OI) sea surface temperature (SST) analysis is produced weekly on a one-degree grid. The analysis uses in situ and satellite SSTs plus SSTs simulated by sea ice cover. Before the analysis is computed, the satellite data are adjusted for biases using the method of Reynolds (1988) and Reynolds and Marsico (1993). A description of the OI analysis can be found in Reynolds and Smith (1994). The bias correction improves the large scale accuracy of the OI. In November 2001, the OI fields were recomputed for late 1981 onward. The new version will be referred to as OI.v2. The most significant change for the OI.v2 is the improved simulation of SST obs from sea ice data following a technique developed at the UK Met Office. This change has reduced biases in the OI SST at higher latitudes. Also, the update and extension of COADS has provided us with improved ship data coverage through 1997, reducing the residual satellite biases in otherwise data sparse regions. The data are available in the following formats: Net CDF Flat binary files Text

  • Twenty three juvenile (8-14 months of age) southern elephant seals (Mirounga leonina L.) from Macquarie Island were tracked during 1993 and 1995. Migratory tracks and ocean areas with concentrated activity, presumed to be foraging grounds, were established from location data gathered by attached geolocation time depth recorders. The seals ranged widely (811-3258 km) and foraging activity centred on oceanographic frontal systems, especially the Antarctic Polar Front and bathymetric features such as the Campbell Plateau region. The seals spent 58.6% of their sea time within managed fishery areas while the remainder was spent on the high seas, an area of unregulated fishing. The Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) areas 58.4.1, 88.2 and especially 88.1 were important and distant foraging areas for these juvenile elephant seals. From fisheries records, diet and the foraging ecology studies of the seals there appears to be little, if any, overlap or conflict between the seals and commercial fishing operations within the regulated commercial areas. However, attention is drawn to the possibility of future interactions if Southern Ocean fisheries expand or new ones commence. Furthermore... The dive duration of 16 underyearling (6-12 months old) southern elephant seals Mirounga leonina during their second trip to sea was investigated using geolocating time depth recorders. Underyearling seals had a lesser diving ability, with respect to duration and depth, than adult southern elephant seals. Individual underyearlings dived for average durations of up to 20.3 minutes and depths up to 416m compared to durations and depths of 36.9 minutes and 589m, respectively for adults. Dive duration was positively related to their body mass at departure, indicating that smaller seals were limited to shorter dive durations, perhaps as a result of their lesser aerobic capacity. All seals often exceeded their theoretical aerobic dive limit (average of 22.1 plus/minus 18.1%). The number of dives exceeding the theoretical aerobic dive limit was not related to mass, suggesting that factors other than mass, such as foraging location or prey availability, may have been responsible for the differences in diving effort. Foraging ability, indicated by the ability of the seals to follow vertically moving prey, was positively related to seal mass, indicating that small mass restricted foraging ability. The shorter dive durations of the smaller seals inferred that they had shallower dive depths in which to search for prey, thus restricting foraging ability. Although foraging ability was restricted by size, foraging success was found to be inversely related to mass, the smaller seals gaining a higher proportion of blubber than larger seals during their foraging trips. Thus, despite smaller seals being restricted to shallower depths and shorter durations, their foraging success was not affected. The fields in this dataset are: Area Perimeter ID Latitude Longitude Time Percent CCAMLR EEZ Season Seal Sex Age (months) Days at Sea Range (km) Bearing (degrees) Sea Surface Temperatures (degrees C) Foraging Areas Departure Mass (kg) At sea mass gain (kg) Rate of mass gain (kg) Survival estimates Length (m) Girth (m) Dives Divers per hour Total Time Diving % trip diving Dive Duration Surface Time Theoretical Aerobic Dive Limit Drift