AU/AADC > Australian Antarctic Data Centre, Australia
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
The Australian Collection of Antarctic Microorganisms (ACAM) was established in 1986 at the University of Tasmania as a collection for microorganisms from the Antarctic continent as well as from subantarctic islands and the Southern Ocean. ACAM is one of the few collections in the world dedicated to the collection of Antarctic bacteria and since its inception has grown to nearly 400 strains. Many of these strains have been isolated from lakes and marine waters in the Vestfold Hills region of Antarctica near Davis Station. Salinity, redox potential, light and temperature all vary dramatically between these water bodies and, on many occasions, have been shown to vary with water depth within them. Microorganisms living in these ecosystems cope with a variety of physical extremes which characterise the Antarctic environment. The potential for biotechnological use of Antarctic microorganisms has become more evident from basic studies on the taxonomy and molecular biology of antarctic microbes. Recently, bacteria have been isolated that (i) contain polyunsaturated w-3 fatty acids, (ii) degrade hydrocarbons (including polycyclic aromatics) and (iii) produce bioactive natural products. ACAM is a continually expanding collection. The search for Antarctic microorganisms that may be commercially exploited has only just begun. Future research should identify novel strains that offer further potential for biotechnology and, at the same time, provide a better understanding of the Antarctic ecosystem. ACAM is now available through the Australian Antarctic Data Centre's Biodiversity database, or via the ACAM website. This work was completed as part of ASAC project 65 (ASAC_65).
-
Sediment Recruitment Experiment 4 (SRE4) was a large, long term (5 year) field experiment run at Casey Station (from 2001 to 2006) testing the effects of 4 different hydrocarbons on marine sediment ecosystems. Four different types of hydrocarbons were individually mixed with defaunated marine sediments and deployed in trays on the seabed at O'Brien Bay-1. Trays were collected after deployment periods of 5 weeks, 56 weeks, 62 weeks, 2 years and 5 years. In addition there was a bioturbation treatment using the burrowing urchin Abatus (at 56 weeks only). Samples were collected from 4 replicate trays of each treatment at each sampling time. Analyses were done of sediment hydrocarbon chemistry, microbial communities, meiofaunal communities, macrofaunal communities and diatom communities. The hydrocarbon treatments were: a synthetic Mobil lubricating oil; the same Mobil lubricating oil after 125? hours use in a vehicle engine; a Fuchs synthetic lubricating oil marketed as highly biodegradable; and Special Antarctic Blend diesel fuel (SAB). A control uncontaminated sediment treatment was used for comparison.
-
This GIS dataset contains bird data from 1998/99 field work in the Windmill Islands by Jonny Stark and Jeroen Creuwels. The locations are Frazier Islands, Ardery Island and Casey station. Polygon data represents the extents of flying bird nesting areas and adelie penguin colonies. Point data represents flying bird nest locations.
-
These data tables were scanned by Fiona Gleadow. The data relate to diving petrels (Pelecanoides) from Heard Island, and generally appear to be measurements of body parts (weight, wing, tail, beak, tarsus, toe) on males and females, as well as measurements of eggs (weight, length and width).
-
This dataset contains the underway data collected during the Aurora Australis Voyage 2 2001-02. This voyage went to Casey and Macquarie Island, leaving from and returning to Hobart. Underway (meteorological, fluorometer and thermosalinograph) data are available online via the Australian Antarctic Division Data Centre web page (or via the Related URL given below). For further information, see the Marine Science Support Data Quality Report at the Related URL below.
-
An occupancy survey on 26 January 2012 found 1 island (70166) along the coast between 111 degrees 00'E - 111 degrees 10'E had populations of breeding Adelie penguins. The survey was conducted from a fixed wing aircraft and oblique aerial photographs were taken of the occupied site. The aerial photographs were geo-referenced to the coastline shapefile from the Landsat Image Mosaic of Antarctica (LIMA, tile E158) and the boundaries of penguin colonies were digitised from the geo-referenced photos with not intentional buffer. Note the quality of the aerial photos was poor and so the resultant boundary mapping will not be very accurate. Also in the Balaena Islands there is a historic record from the 50s of penguins nesting on Thompson Islet (70166). When aerial photos were taken of this island penguins could not be detected. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.
-
This metadata record contains the results from bioassays conducted to show the response of larval Antarctic Sterechinus neumayeri sea urchins to contamination from combinations if IFO 180 fuel and the fuel dispersant Slickgone NS. AAS project 4142. Experiments used an intermediate grade Fuel Oil (IFO 180) and an internationally approved fuel dispersant, Slickgone NS, produced by Dasic International LTD. Treatments included a physically dispersed treatment of IFO 180 only, a chemically dispersed treatment of IFO 180 treated with Slickgone NS and a Slickgone NS only treatment to determine the toxicity of the dispersant. Treatments were experimentally mixed using a magnetic stirrer to combine treatment substances and filtered seawater (FSW) in temperature-controlled cabinets at 0oC to create a Water Accommodated Fraction (WAF). WAFs were produced in 2 L and 5 L glass aspirator bottles following the methods of Singer, Aurand et al. (2000) with adaptations by Barron and Ka'aihue (2003) and Kostzakoulakis (chemistry section, project 4142) stirring for 42 h with a settling time of 6 h. WAF treatments used concentrations of 100%, 50%, 20% and 10%, CEWAF and dispersant only treatments used concentrations of 10%, 5%, 1% and 0.1%. Toxicity tests were conducted in temperature-controlled cabinets at 0 oC using uncapped, forty-millilitre glass headspace vials, each containing 15.5 ml of test solution and 0.5 ml of embryo suspension. Fertilisation methods followed standard procedures for Sterechinus neumayeri. Two tests were conducted to determine the effect of a single pollution event (test 1) compared with a recurring repeated pulse pollution event (test 2). Test 1 required no water changes, while test 2 required renewal of the test treatments on a 4-day basis. Three endpoints were used, un-hatched blastula (48 h to 48.5 h) to represent the embryonic phase, gastrula (10 d) and 4-armed pluteus (16 d to 18 d). At the termination of each endpoint, 1 ml of 10% buffered formalin was added to each relevant vial and recapped. At the conclusion of the experiments, preserved embryos were observed under a dissecting microscope to determine the number of normal, abnormal and unfertilised embryos relative to controls. Samples for analysis of total petroleum hydrocarbon content were taken throughout the 2 experiments to determine the actual concentrations to which embryos and larvae were exposed. The measured concentrations were integrated following the methods of Payne et al. (2014) to obtain a profile of hydrocarbon content over each test period. Two spreadsheets are included in this metadata record detailing survival data and results of hydrocarbon analysis. The survival data file includes test condition details on the first tab, with data for tests 1 and 2 on the second and third tabs. Test treatment and concentration are listed on the left of each data block and count categories are defined in the top left panel. Development stage, date preserved and age of organism is defined for each data block, representing the three endpoints included in the experiments: unhatched blastula, gastrula and 4-armed pluteus. The hydrocarbon analysis, TPH (total petroleum hydrocarbon) file details chemical analysis results produced by K. Kotzakoulais at Macquarie University as part of project 4142. Row terminology explanations are as follows: TPH metadata Test name- indicates the tested species Exp number-indicates whether the data belongs to test 1 or test 2 Water change- details the identification of the sample in relation to the 4-day water change regime. Start samples represent the beginning of the experiment. Pre samples are taken at the end of the corresponding 4-day period, before the water is changed. 'Post' samples are taken of newly made test solutions. The chronological order of sampling is therefore: Start, pre4d, post4d, pre8d, post 8d etc. Only 'pre' samples were taken for test 1, as there were no water changes. less than C9 - greater than C28- Hydrocarbon content of samples was broken down into four compound size classes detailed for each analysis. Contamination- contamination was detected in samples, the source of contamination remains unclear, however it was established that contamination occurred during the sampling process and therefore did not come into contact with organisms. Contamination was therefore excluded from calculations. The hydrocarbon content of 0.1% dilutions was unable to be reliably analysed due to accuracy of the equipment and interfering contamination. Control data indicates spot checks to confirm the presence or absence of fuel. Very small amounts of hydrocarbons were detected as lighter fuel components evaporated and dissolved into control water within the cabinet. These very small amounts are negligible. Abnormality metadata Tab 1 details test conditions Tab 2 'Test 1' includes the data for test 1 Tab 2 'Test 2' includes the data for test 2. All observational categories are defined within the spreadsheet.
-
Adelie colony boundaries at Bechervaise Island were mapped by Matthew Pauza on the 21 Dec 2016. Subcolonies were mapped by circumnavigating the perimeter on foot while carrying a Garmin GPS (Etrex30) to record the track. When mapping the perimeter of the subcolonies a buffer distance of approximately 2.5 meters was maintained between the mapper and the breeding birds. This buffer distance was reduced by .5m to between 2m in the final shapefiles. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.
-
This database provides the most comprehensive systematic list of mega-epibenthic assemblages in the Australian Economic Exclusive Zone (AEEZ) of Heard Island and McDonalds Islands (HIMI) at water depths between 168 and 970 m. Data were collected to better understand the types and distribution of benthic invertebrates, their vulnerability to bottom fishing, and the effectiveness of the HIMI Marine Protected Area (MPA) for representing and protecting the regions benthic biodiversity. A total 504 taxa from 14 phyla were collected from 129 stations throughout HIMI. Two methods, beam trawl (for non-complex flat terrains) and epibenthic sled (for more complex, rough terrains), were used to sample the megabenthos. Both the trawl and sled were fitted with a 1 cm-2 mesh cod-end with a net opening (height x width) of 2.7 x 1.2 m for the beam trawl and 1.2 x 0.6 m for the epibenthic sled. Samples were sorted into broad taxonomic groups onboard the sampling vessel then frozen for later analysis. In the laboratory, samples were sieved over a 1 cm mesh and all dead material removed. Megabenthos were identified to the lowest possible taxonomic level by using the available literature and assistance of taxonomic specialists. All non-colonial taxa were counted and then weighed. Colonial taxa that could not be counted as individuals, e.g. demosponges and bryozoans, were separated to the lowest taxonomic level and a whole weight recorded per sample. Taxonomic expertise was provided by Dick Williams (Osteichthyes and Chondrichthyes) of the Australian Antarctic Division; Daphne Fautin and Andrea Crowther (Actinaria) of the University of Kansas; Cardin Wallace (Actinaria) from Queensland Museum; Elizabeth Turner (Bivalvia and Gastropoda) and Genefor Walker-Smith (Invertebrates) from the Tasmanian Museum and Art Gallery; Phillip Bock (Bryozoa), Mark Norman (Cephalopoda), Gary Poore (Crustacea), Joanne Taylor (Decapoda), Mark O'Loughlin (Holothuriodea), Jan Watson (Hydrozoa), Tim O'Hara (Ophiuroidea and Asteroidae), Robin Wilson (Polychaeta) and David Staples (Pycnogonida) of Museum Victoria; Igor Smirnov (Ophuroidea) of the University of Russia; and Andrew Hosie (Cirripedia) of the Western Australian Museum. A reference collection of the taxa is lodged at the Tasmanian Museum and Art Gallery, Hobart, Tasmania. On 2022-11-02 a minor data update was made to add scanned copies of old worksheets.
-
Albatross and petrel populations have declined globally due to interactions with fishing operations. The survival of four albatross and two giant petrel species breeding on Macquarie Island is threatened and ongoing monitoring is essential to assess their conservation status and mitigate negative influences. Long-term studies are required to obtain reliable information on population size and productivity and age- and sex- related survival parameters. The birds' oceanic movements is also being investigated so that questions regarding temporal and spatial overlap with fisheries can be addressed. Demographic and population data collected for the 2012-13 breeding season on Macquarie Island for 4 species of albatross and 2 species of giant petrel are summarised in the annual report (pdf) and all data contained in tables therein or attached xlxs spreadsheets and access database. Data collected includes breeding census, breeding success, nest location, banding and resight data for the 2012-13 season. The Access database contains data from 1950-2012. 2013-2014 information are held in the 2013-2014 folder, which includes several excel spreadsheets, an updated access database, and a copy of the final report. 2014-2015 information are held in the 2014-2015 folder, which includes several excel spreadsheets, a copy of the report, and updated database tables. 2015-2016 information are held in the 2015-2016 folder, which includes several excel spreadsheets, a copy of the report, and updated database tables. 2016-2017 information are held in the 2016-2017 folder, which includes several excel spreadsheets. 2017-2018 information are held in the 2017-2018 folder, which includes several excel spreadsheets and a pdf document showing the location of nesting sites (waypoints provided in the excel files). 2018-2019 information are held in the 2018-2019 folder, which includes several excel spreadsheets and a pdf document showing the location of nesting sites (waypoints provided in the excel files). This project has replaced project 2569 (which in turn replaced project 751).