WESTERLY WINDS
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
Reconstructed sea spray and minerogenic data for a 12,000 year lake sediment record from Emerald Lake, Macquarie Island. Proxies are based on biological (diatoms) and geochemical (micro x-ray fluorescence and hyperspectral imaging) indicators. Data correspond to the figures in: Saunders et al. 2018 Holocene dynamics of the Southern Hemisphere westerly winds and possible links to CO2 outgassing. Nature Geoscience 11:650-655. doi.org/10.1038/s41561-018-0186-5. Detailed supplementary information: https://static-content.springer.com/esm/art%3A10.1038%2Fs41561-018-0186-5/MediaObjects/41561_2018_186_MOESM1_ESM.pdf Abstract: The Southern Hemisphere westerly winds (SHW) play an important role in regulating the capacity of the Southern Ocean carbon sink. They modulate upwelling of carbon-rich deep water and, with sea ice, determine the ocean surface area available for air–sea gas exchange. Some models indicate that the current strengthening and poleward shift of these winds will weaken the carbon sink. If correct, centennial- to millennial-scale reconstructions of the SHW intensity should be linked with past changes in atmospheric CO2, temperature and sea ice. Here we present a 12,300-year reconstruction of wind strength based on three independent proxies that track inputs of sea-salt aerosols and minerogenic particles accumulating in lake sediments on sub-Antarctic Macquarie Island. Between about 12.1 thousand years ago (ka) and 11.2 ka, and since about 7 ka, the wind intensities were above their long-term mean and corresponded with increasing atmospheric CO2. Conversely, from about 11.2 to 7.2 ka, the wind intensities were below their long-term mean and corresponded with decreasing atmospheric CO2. These observations are consistent with model inferences of enhanced SHW contributing to the long-term outgassing of CO2 from the Southern Ocean.