Keyword

VELOCITY

10 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 10
  • Acoustic Doppler current profiler (ADCP) measurements from a hull mounted 150 kHz narrow band ADCP unit were collected in the Southern Ocean from 1994 to 1999, on the following cruises: au9404, au9501, au9604, au9601, au9701, au9706, au9807 and au9901. The fields in this dataset are: Currents bottom depth cruise number ship speed time velocity GPS

  • The Acoustic Doppler Current Profiler (ADCP) data were acquired constantly over the duration of the Australian 2006 V3 BROKE-West survey. Data presented here are the results of 1/2 hour integrations of the cruise data from the start of the voyage in Fremantle, Australia, to the start of the return leg just north of Australia's Davis Station in Antarctica (-66.56S, 77.98E). North and eastward components of the current velocity are given for depths up to 300m below the surface along the ship track. Data Acquisition: The shipboard ADCP is a continuous broadband recording device that operates over the duration of the voyage, ensonifying the water column once a second. As the instrument is fixed to the ship, it has a range of approximately 250m deep. Data from the shipboard Ashtek 3 dimensional GPS system is used along with bottom tracking data (when the water is shallow enough i.e. less than 250m) and automatically integrated into ADCP ping data to provide absolute current velocities. Data Processing: The ship ADCP constantly and automatically collects and stores raw .rawdp binary files in ensembles of three minutes worth of pings. This is regularly automatically collated into larger .adp files containing data for several hours (200+ ensembles). This data are processed for use in analysis using specialist software provided by Mark Rosenberg (mark.rosenberg AT utas.edu.au) that integrates together data from the ADCP .adp files for periods (30 minutes in this case) over a give time (from cruise start to the 3-Mar-2006). This produces .any ASCII files. These ASCII files are read into the Matlab processing package using scripts provided by Sergeui Sokolov (sergeui.sokolov AT csiro.au) which then produces the .mat matlab data files covered by this metadata. ADCP data requires proper calibration with respect to ship motion, which were not carried out for this data set, and could cause significant change when processed properly after the voyage. Dataset format: The processed ADCP file is given in matlab .mat format. All 1/2 hour integrations of ADCP data for BROKE-West from 3 days (31-dec-2005) before departure from Fremantle, to the 3-Mar-2006 are included, each column in each matrix or array representing an individual 1/2 hour integration in chronological order. There are numerous gaps in the data that occurred when the ADCP crashed and was not immediately reset or when bad data prevented processing. The location can be identified by plotting a scatter plot of longitude vs latitude, and the times by plotting the julian date. The matlab variables contained in the BROKE_West_ADCP.mat file are contained inside the adcp structure: lon: Longitude (decimal degrees) lat: Latitude (decimal degrees) time: Each column gives the year month day and hour of collection of the corresponding columns in the other variables. depth: Depth of each corresponding velocity value for each 1/2 profile. 60 fixed bin depths are given for each profile. (meters) press: As for depth but given in db. (db) u: Absolute current eastward component in ms-1 for each depth and profile. v: Absolute current northward component in ms-1 for each depth and profile. unav: Ship absolute eastward component in ms-1 for each profile vnav: Ship absolute northward component in ms-1 for each profile jtime: Julian date for each profile (julian days) badvals: Indexes of anomolous latitude and longitude values Acronyms used: ADCP: Accoustic Doppler Current Profiler IASOS: Institute of Antarctic and Southern Ocean Studies CSIRO: Commonwealth Scientific and Industrial Research Organisation This work was completed as part of ASAC projects 2655 and 2679 (ASAC_2655, ASAC_2679).

  • The Lowered Acoustic Doppler Current Profiler (LADCP) data were acquired while the Conductivity Temperature Depth (CTD) sensor was in the water during the Australian 2006 V3 BROKE-west survey. Data Acquisition: The LADCP is mounted on the CTD frame and is lowered through the water column from surface to bottom on each CTD cast. During the cast upward and downward facing sensor heads ensonify the water column with four beams per head, collecting the data necessary to calculate the vertical velocity of the LADCP on the CTD frame, as well as the northward and eastward components of the current relative to the LADCP for the entire water column. Once the LADCP has been retrieved, the data collected in the cast are downloaded to a PC as two raw binary .adp files, one for the upward looking head and one for the downward. This occurs for each CTD cast. The only modification to a normal CTD cast procedure for the LADCP is a 5 minute pause within 50 m of the sea floor on the upcast. This gives the downward sensor time to gather enough data for later determination of relative bottom velocity. The shipboard ADCP is a continuous recording device that operates over the duration of the voyage, ensonifying the water column once a second. It operates in a similar way to the LADCP, except that as it is fixed to the ship, it has only a range of approximately 250m deep. The ADCP data are necessary for final LADCP data processing. Similarly shipboard 10 seconds GPS records and CTD pressure data for the period of each cast is required for LADCP data processing. Data Processing: Once collected the upward and downward raw .adp LADCP files are subjected to fairly extensive processing using software written for the Matlab package, to produce the usable .mat data files given by this dataset. This software, written by Sergeui Sokolov (sergeui.sokolov AT csiro.au), and slightly modified for the 2005/06 V3 BROKE-west voyage by Andrew Meijers and Andreas Klocker combines the raw .adp files with the shipboard ADCP data, 10 second ship GPS data and CTD profile data. While the raw LADCP .adp files can be processed alone with minimal CTD data (date, start time, end time, start and end lat and long and max depth), they will only give current velocities relative to the CTDs frames motion. To gain an absolute profile the software identifies bottom and surface reflections, and uses this and ship ADCP and GPS data as boundary conditions for an integration of the velocity shear in the raw .adp files. The end result of processing is velocity in north and south components for each depth over the CTD cast. For more details refer to the above reference (Wijffels, et. al. 2005). Dataset format: The processed LADCP file (AU0603_LADCP_3_to_120.mat) is given in matlab .mat format, and before future processing with properly calibrated ADCP data, should be regarded as preliminary only. All CTD casts for BROKE-West are included, except for casts 1,2 and 119, where the LADCP was not used in the CTD cast. Casts 1 and 2 are not in the dataset, while 119 is represented by NaN (not a number) values. The absence of casts 1 and 2 from the data mean that care should be taken in attributing the data to the correct cast. Column one in each velocity matrix represents cast 3, not 1, and column 2 is cast 4 and so on up to column 118 representing CTD cast 120. On several casts the ADCP data were not available, meaning only part of the LADCP processing could be completed. This occurred for casts 5, 46, 91, 92, and 96, and data given here are unreferenced to a bottom velocity or ship track. Other errors occurred that meant that casts 68 and 115 could not be processed at all, and so data for these casts are represented by NaN values. Casts not present in dataset: 1,2 Casts represented by NaN values: 68,115 and 119 LADCP data created without ADCP input on casts: 5,46,91,92,96 (warning unconstrained values) The matlab variables contained in the file are: bindep: 20 depth levels in meters at which velocity data occurs for each profile. Each row of matrix represents a depth level, each column a CTD cast, ascending from cast 3 to 120. date: Start date of each cast (UT) (year month day) lat: Start latitude of each cast (decimal degrees) lon: Start longitude of each cast (decimal degrees) stationno: Last 3 digits gives the CTD cast number time: Start time of CTD cast (UT) of each cast (hours min sec) u_down: u (eastward) component of velocity in ms-1 for each bindepth and CTD cast, using only downward looking head data u_final: As for u_down but using data from both heads. This is the best estimate of velocity. u_up: As for u_down, but upward looking head data only. v_down: As for u_down, but northward component of velocity v_final: As for u_final, but northward component of velocity v_up: As for u_up, but northward component of velocity zbottom: Bottom depth in meters for each cast (m) Acronyms used: LADCP: Lowered Acoustic Doppler Current Profiler ADCP: Acoustic Doppler Current Profiler CTD: Conductivity Temperature Depth IASOS: Institute of Antarctic and Southern Ocean Studies CSIRO: Commonwealth Scientific and Industrial Research Organisation This work was completed as part of ASAC projects 2655 and 2679 (ASAC_2655, ASAC_2679).

  • The CTD data were acquired when the RMT instrument was in the water. Data Acquisition: There is a FSI CTD sensor housed in a fibreglass box that is attached to the top bar of the RMT. The RMT software running in the aft control room establishes a Telnet connection to the aft control terminal server which connects to the CTD sensor using various hardware connections. Included are the calibration data for the CTD sensor that were used for the duration of the voyage. The RMT software receives packet of CTD data and every second the most recent CTD data are written out to a data file. Additional information about the motor is also logged with the CTD data. Data are only written to the data file when the net is in the water. The net in and out of water status is determined by the conductivity value. The net is deemed to be in the water when the conductivity averaged over a 10 second period is greater than 0. When the average value is less than 0 the net is deemed to be out of the water. New data files were automatically created for each trawl. Data Processing: 1. Adjustment of the net open time. If the net did not open when first attempted then the net was 'jerked' open. This meant the winch operator adjusted the winch control so that it was at maximum speed and then turned it on for a very short time. This had the effect of dropping the net a short distance very quickly. This dislodges the net hook from its cradle and the net opens. The scientist responsible for the trawl would have noted the time in the trawl log book that the winch operator turned on the winch to jerk the net. The data files will have started the 'net open' counter 10 seconds after the user clicks the 'Net Open' button. If this time did not match the time written in the trawl log book by the scientist, then the net open time in the CSV file was adjusted. The value in the 'Net Open Time' column will increment from the time the net started to open to the time that the net started to close. The pressure was also plotted to ensure that the time written down in the log book was correct. When the net opens there is a visible change in the CTD pressure value received. The net 'flies' up as the drag in the water increases as the net opens. If the time noted was incorrect then the scientist responsible for the log book, So Kawaguchi, was notifed of the problem and the data file was not adjusted. 2. Removing unused columns from the original log files. The original log files that were produced by the RMT software were trimmed to remove any columns that did not pertain to the CTD data. These columns include the motor information and the ITI data. The ITI data gives information about the distance from the net to the ship but was not working for the duration of the BROKE-West voyage. This trimming was completed using a purpose built java application. This java class is part of the NOODLES source code. Dataset Format: The dataset is in a zip format. There is a .CSV file for each trawl, 125 in total. There were 51 Routine trawls and 74 Target Trawls. The file naming convention is as follows: [Routine/Target]NNN-rmt-2006-MM-DD.csv Where, NNN is the trawl number from 001 to 124. MM is the month, 01 or 02 DD is the day of the month. Also included in the zip file are the calibration files for each of the CTD sensors and the current documentation on the RMT software. Each CSV file contains the following columns: Date (UTC) Time (UTC) Ship Latitude (decimal degrees) Ship Longitude (decimal degrees) Conductivity (mS/cm) Temperature (Deg C) Pressure (DBar) Salinity (PSU) Sound Velocity (m/s) Fluorometer (ug/L chlA) Net Open Time (mm:ss) If the net is not open this value will be 0, else the number of minutes and seconds since the net opened will be displayed. When the user clicks the 'Net Open' button there is a delay of 10 seconds before the net starts to open. The value displayed in the 'Net Open Time' column starts incrementing once this 10 seconds delay has passed. Similarly when the user clicks the 'Net Close' button there is a delay of 6 seconds before the net starts to close. Thus the counter stops once this 6 seconds has passed. Acronyms Used: CTD: Conductivity, Temperature, Pressure RMT: Rectangular Midwater Trawl CSV: Comma seperated value FSI: Falmouth Scientific Inc ITI: Intelligent Trawl Interface This work was completed as part of ASAC projects 2655 and 2679 (ASAC_2655, ASAC_2679).

  • ---- Public Summary from Project ---- Most of the snow falling on inland Antarctica drains via large ice streams and floating ice shelves to the sea where it lost by iceberg calving or as melt beneath the shelves. Ocean interaction beneath the shelves is complicated, and regions of basal refreezing as well as melt occur. These processes are important not only because they are a major component of the Antarctic mass budget, but because they also modify the characteristics of the ocean, influencing the formation of Antarctic Bottom Water which plays a major role in the global ocean circulation. The processes are sensitive to climate change, and shifts in ocean temperature or circulation near Antarctica could lead to the disappearance of all Antarctic ice shelves. The Amery Ice Shelf is the major embayed shelf in East Antarctica, and the subject of considerable previous ANARE investigation. Ocean interaction processes occurring beneath the shelf are only poorly understood, and this project will directly measure water characteristics and circulation in the cavity underneath the ice shelf, and the rates of melt and freezing on the bottom of the shelf. These measurements will be made through a number of access holes melted through the shelf. The project is closely linked with other projects investigating the circulation and interactions in the open ocean to the north of the shelf, and studies of the ice shelf flow and mass budget. There will be child records for each of the following data sets: AM01 and AM01 b boreholes * CTD profiles through water column * CTD annual records at selected depths * Ocean current profiles through water column * Temperature measurements through ice shelf and across ice-water interface * Small ice core samples * 0.5 m sea floor sediment core * Video footage of borehole walls (including marine ice) and sea floor benthos * GPS records of surface tidal motion * Video AM02 borehole * CTD profiles through water column * CTD annual records at selected depths * Borehole diameter caliper profiles * Temperature measurements through ice shelf and across ice-water interface * 1.5 m sea floor sediment core * GPS records (surface elevation, ice motion) AM03 borehole * Aquadopp current meter data * Brancker thermistor data * Caliper data * FSI-CTD profile data * Drilling parameters data * Seabird MicroCAT CTD moorings at three depths in ocean cavity beneath the shelf * Video AM04 borehole * Aquadopp current meter data * Brancker thermistor data * Caliper data * FSI-CTD profile data * Drilling parameters data * Seabird MicroCAT CTD moorings at three depths in ocean cavity beneath the shelf * Video AM05 borehole * Aquadopp current meter data * Caliper data * FSI-CTD profile data * Drilling parameters data * Seabird MicroCAT CTD moorings in ocean cavity beneath the shelf AM06 borehole * Aquadopp current meter data * Caliper data * FSI-CTD profile data * Drilling parameters data * Seabird MicroCAT CTD moorings in ocean cavity beneath the shelf Taken from the 2008-2009 Progress Report: Progress Against Objectives: The work undertaken in the past 12 months has continued to relate chiefly to the first of our objectives - "quantify the characteristics and circulation of ocean water in the cavity beneath the Amery Ice Shelf". Data from the AMISOR project have provided the first record of a seasonal cycle of ice shelf-ocean interaction. After recovering the 2008 data we now have near-continuous oceanographic data from beneath the Amery at 3 different depths for 6, 6, 3, and 3 years from 4 different sites. Note that the instruments at AM01 and AM02 (6 annual cycles of data each) are no longer recording due to expiration of the onboard batteries (3-5 years expected life cycle). This allows us to investigate the "real" 3-D, seasonally varying, circulation and melt/freezing cycle beneath an ice shelf - rather than the steady state, simplified "2-D ice pump circulation" that has mostly been assumed previously. As much as 80% of the continental ice that flows into the Amery Ice Shelf from the Lambert Glacier basin is lost as basal melt melt beneath the southern part of the shelf, but a considerable amount of ice is also frozen onto the base in the north-western part of the shelf. These processes of melt and refreezing are due to a pattern of water circulation beneath the ice shelf which is driven by sea ice formation outside the front of the shelf. Our multi-year data from 4 sites beneath the Amery ice shelf show that there is a very strong seasonal cycle in the characteristics of the ocean water beneath the shelf, and strong interseasonal variability in this. The seasonal cycle is driven mostly by the seasonal cycle of sea ice formation and decay in Prydz Bay, and interseasonal variations are due to differences in the general ocean circulation, and in particular the upwelling of Circumpolar Deep Water onto the continental shelf in Prydz Bay. The melt and freeze processes beneath the ice shelf, also themselves modify the water characteristics. Taken from the 2009-2010 Progress Report: The AMISOR project drilled two new 600 m deep boreholes on the Amery Ice Shelf in 2009-10: the first on the marine ice flowline to enhance understanding of the re-freezing process beneath the shelf; and the second in a region of known interest with respect to circulation patterns in the ocean cavity below the shelf. Instrument deployments at both sites should provide valuable annual cycle data over the next 4-5 years.

  • The International Programme for Antarctic Buoys (IPAB) is run by the World Climate Research Programme (WCRP). IPAB is a self-sustaining project of the WCRP, and provides a link between institutions with Antarctic and Southern Ocean interests. IPAB was formally established, following a one year pilot phase, at a meeting in Helsinki, Finland in June 1994. IPAB aims to establish and maintain a network of drifting buoys in the Antarctic sea-ice zone, which monitor ice motion, pressure and temperature. In 1997, 16 organisations, representing 11 countries, were involved in the IPAB programme, including: Alfred Wegener Institute, Antarctic CRC, Australian Antarctic Division, British Antarctic Survey, Commonwealth Bureau of Meteorology, INPE -National Institute for Space Research, Institute for Marine Research and University of Helsinki, Hydrographic Department, Maritime Safety Agency, National Ice Center, National Institute of Polar Research, Programma Nazionale di Ricerche in Antardtide, Scott Polar Research Institute, Service Argos, South African Weather Bureau, United Kingdom Meteorological Office, and World Data Center A Glaciology. Tables of data availability, information, experiment details, literature, and data sets are available from the IPAB home page. Links are also available to databases held by other organisations, and links to Arctic and Indian Ocean buoy databases. The data are available via several provided URLs. Further information and the data can be obtained from the IPAB home page URL. The data and documentation are also available directly from the NSIDC website. Finally, an older copy of the data are also held locally on the Australian Antarctic Data Centre's servers. The documentation held at the NSIDC website provides important information on interpreting the dataset. A static copy of this document is included with the local copy of the dataset held on the Australian Antarctic Data Centre's servers. Data from January 1995 to July 1998 only has been made available on the NSIDC website (and correspondingly on the AADC's servers). The Australian subset contains data from drifting buoys that are along the ice edge or frozen into the ice. The data were observed around the Australian sector of Antarctica and recordings began in February 1985. Observations exist for around 20 buoys over this area and are not continuous over this area for this time period. Data from the period 1995-1998 only have been archived. This work was also completed as part of ASAC projects 732, 742 and 2678. The fields in this dataset are: Buoy Number Year Time Longitude Latitude ARGOS Positional Accuracy Sea Ice Flag Air Pressure Air Temperature Water Temperature Velocity

  • AM02 borehole drilled December 2000. Profiling measurements conducted over a period of one week. Long term monitoring instruments installed 2001-01-06. Consult Readme file for detail of data files and formats.

  • AM01b borehole drilled mid-December 2003. Profiling measurements conducted over a period of a few days. Video recording of borehole walls and sea floor benthos. Sediment sample collected from sea floor. No long term monitoring instruments installed. AM01b borehole was drilled within a few hundred metres of where the ice shelf had carried the original AM01 borehole to, in the intervening 2 years. As the AM01 borehole had a mooring suite of instruments, none were emplaced in the AM01b borehole. There are several video files attached to this metadata record, and further details about them are provided in the accompanying readme document. The data file contains downcam video, sidecam video and miscellaneous video.

  • AM01b borehole drilled mid-December 2003. Profiling measurements conducted over a period of a few days. Video recording of borehole walls and sea floor benthos. Sediment sample collected from sea floor. No long term monitoring instruments installed. AM01b borehole was drilled within a few hundred metres of where the ice shelf had carried the original AM01 borehole to, in the intervening 2 years. As the AM01 borehole had a mooring suite of instruments, none were emplaced in the AM01b borehole.

  • AM01 borehole drilled mid-January 2002. Profiling measurements conducted over a period of one week. Long term monitoring instruments installed 2002-01-16. AM01b borehole drilled mid-December 2003. Video recording of borehole walls and sea floor benthos. Sediment sample collected from sea floor.