SURVIVAL
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
From the abstract of some of the papers: It has been suggested that increased springtime UVB radiation caused by stratospheric ozone depletion is likely to reduce primary production and induce changes in the species composition of Antarctic marine phytoplankton. Experiments conducted at Arthur Harbour in the Antarctic Peninsula revealed a reduction in primary productivity at both ambient and increased levels of UVB. Laboratory studies have shown that most species in culture are sensitive to high UVB levels, although the level at which either growth or photosynthesis is inhibited is variable. Stratospheric ozone depletion, with resultant increased springtime UVB irradiance, has been occurring with increasing severity since the late 1970's. Thus the phytoplankton community has already experienced about 20 years' exposure to increasing levels of UVB radiation. Here we present analyses of diatom assemblages from high-resolution stratigraphic sequences from anoxic basins in fjords of the Vestfold HIlls, Antarctica. We find that compositional changes in the diatom component of the phytoplankton community over the past 20 years cannot be distinguished from long-term natural variability, although there is some indication of a decline in the production of some sea-ice diatoms. We anticipate that our results are applicable to other Antarctic coastal regions, where thick ice cover and the timing of the phytoplankton bloom protect the phytoplankton from the effects of increased UVB radiation. Growth rate, survival, and stimulation of the production of UV-B (280 to 320 nm) absorbing compounds were investigated in cultures of five commonly occurring Antarctic marine diatoms exposed to a range of UV-B irradiances. Experimental UV-B exposures ranged from 20 to 650% of the measured peak surface irradiance at an Antarctic coastal site (0.533 J per square metre per second). The five diatom species (Nitzschia lecointei, Proboscia alata, P. inermis, Thalassiosira tumida and Stellarima microtrias) appear capable of surviving two to four times this irradiance. In contrast to Phaeocystis cf. pouchetti, another major component of the Antarctic phytoplankton, the concentrations of pigments with discrete UV absorption peaks in diatoms were low and did not change significantly under increasing UV-B irradiance. Absorbance of UV-B by cells from which pigments had been extracted commonly exceeded that of the pigments themselves. Most of this absorbance was due to oxidisable cell contents, with the frustule providing the remainder. Survival of diatoms did not correlate with absorption by either pigments, frustules or oxidisable cell contents, indicating that their survival under elevated UV-B irradiances results from processes other than screening mechanisms. Springtime UV-B levels have been increasing in Antarctic marine ecosystems since the 1970's. Effects on natural phytoplankton and sea-ice algal communities, however, remain unresolved. At the Marginal Ice Edge Zone, enhanced springtime UV-B levels coincide with a shallow, stratified water column and a major phytoplankton bloom. In these areas it is possible that phytoplankton growth and survival is adversely impacted by enhanced UV-B. In coastal areas, however, the sea ice, which attenuates most of the UV-B before it reaches the water column, remains until December/January, by which time UV-B levels have returned to long-term seasonal averages. Phytoplankton from these areas are unlikely to show long-term changes resulting from the hole in the ozone layer. Fjords of the Vestfold Hills, eastern Antarctica, have anoxic basins which contain high-resolution, unbioturbated sedimentary sequences. Diatom assemblages from these sequences reflect the diatom component of the phytoplankton and sea-ice algal assemblages at the time of deposition. Twenty-year records from these sequences show no consistent record of change in species composition, diversity or species richness. Six-hundred-year records from the same area also show changes in species abundance greater than those seen in the last 20 years. From these records it can be seen that recent changes in diatom abundances generally fall within the limits of natural variability and there is little evidence of recent changes that might be associated with UV-B-induced change.
-
Publication of these results is currently in progress with the Journal of Animal Ecology. Summary 1.An efficient method of describing change in Antarctic marine ecosystems is long-term monitoring of land-breeding marine predators. High-level predators are used to index the state of environment on the notion that perturbations in the ecosystem will affect their diet, reproductive performance and other demographics. For this purpose, Weddell seals breeding at the Vestfold Hills have been marked and re-sighted for the past 28 years (1973 - 2000). 2.Successful reproduction requires considerable energetic resources. The difference between rates of conception and rates of parturition suggests pregnant females abort reproductive attempts when their energy stores are low. In this way, annual rates of reproduction (i.e. parturition) are a measure of foraging efficiency. 3.Previous attempts to estimate Weddell seal reproduction have been biased by different rates of re-sighting breeding and non-breeding females. We used multistate mark and re-sight models to account for this and other variables when estimating reproductive rate. 4.The amplitude of temporal variation was much greater for reproduction than for survivorship, indicating that parous (breeding) females maximised survival by reproducing less. This strategy could be successful in fluctuating environments because seals live longer and experience more reproductive occasions. 5.The population had low reproductive rates from 1983 to 1985 and throughout the 1990s. In those years, potential recruitment into breeding groups was reduced to 50 - 60 % of the cohort before viable pups were even born. 6.Even in years of low reproductive rate, typically half (52%) of the breeding females produced pups. It seemed that individuals differed in their foraging success and thus body condition and / or their functional response to this. 7.There was no evidence for costs of reproduction. We infer that the seals responded to environmental conditions prior to parturition, as opposed to proceeding with reproduction when inadequately resourced and depleting energy resources such that they had lower probability of surviving or reproducing the following year. 8.Synthesis and applications: This study demonstrates a method of estimating reproductive rate that overcomes bias inherent in traditional methods. Estimated in this way, we propose that reproductive rate is the best indicator of the state of marine ecosystems that can be indexed for Weddell seals. The fields in this dataset are: Year Standard Error Upper confidence interval Lower confidence interval Breeding probability Upper error bar Lower error bar