Keyword

SOUTHERN OCEAN

79 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 79
  • Southern Ocean Seabirds Bibliography compiled by SCAR Bird Biology Subgroup contains 1,112 records. The fields in this dataset are: year author title journal

  • CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources) Statistical Reporting Subareas. GIS data representing the boundary (line) and centroid (point with the area name as an attribute) of each area. The southern boundary of the areas adjacent to Antarctica is the coastline of Antarctica. The coastline has not been included with this data. This dataset is no longer maintained by the Australian Antarctic Data Centre as the CCAMLR Statistical Reporting Subarea boundaries are now available from CCAMLR's Online GIS (see the Related URL).

  • Metadata record for data from ASAC Project 2301 See the link below for public details on this project. ---- Public Summary from Project ---- This study develops and combines the latest molecular and electronics technology into a comprehensive investigation of diet and food-web relationships of Southern Ocean predators (whales, seals, penguins) and commercial marine resources (krill, fish, squid). This type of information is essential for ecosystem models that set sustainable catch limits for fisheries. From the abstract of the referenced paper: We describe seven group-specific primer pairs that amplify small sections of ribosomal RNA genes suitable for identification of animal groups of major importance as prey items in marine ecosystems. These primer sets allow the isolation of DNA from the target animal groups from mixed pools of DNA, where DNA-based identification using universal primers is unlikely to succeed. The primers are designed for identifying prey and animal diets, but could be used in any situation where these animal groups are to be identified by their DNA. Progress report from the 2006/2007 Season: Overall objective This new multi-year initiative project within the AMLR program aims to develop and combine the latest molecular and electronics technology to facilitate a comprehensive investigation of appropriately scaled and strategically located trophodynamics of Southern Ocean higher marine predators and commercial marine living resources. The objectives and early experimental design are largely responsive to needs determined by the Australian Antarctic Division's core-function obligations to CCAMLR, as well as other international organisations, the most relevant of which are the International Whaling Commission (IWC) and Southern Ocean Global Ocean Ecology Dynamics (SO-GLOBEC). Traditionally studies of diet of higher predators have often relied upon the use of a single, uncalibrated, methodology, and samples are usually collected in a manner that precludes stratification by age and sex class. Such studies are often subordinate experiments to a larger overall project. In contrast, the power of this new initiative project will be its focus on calibration across a suite of established and novel molecular and macroscopic techniques, feeding trials in controlled situations, direct linkage of samples to age and sex classes, and a detailed knowledge of the foraging behaviour of a sub-set of sampled animals. The parallel development and incorporation of electronic tools to measure predator foraging ecology further strengthens this work. In order to achieve the aims of this study a multi-disciplinary, widely collaborative and multi-streamed program has been developed. Methodological development underpins the potential power of this project to delivery its objectives. The detailed design-phase of incorporating these new approaches into an experimental framework will follow this developmental phase. In order to best represent the sub-objectives of each phase of this study, the work has been divided into the following core components: * Experimental Design (phase 1: methodological development) * Development of DNA-based molecular techniques to measure prey harvesting * Validation trials of molecular techniques * Modelling/analysis to develop a matrix of methodologies to best predict prey composition in predator diet * Development of electronic equipment to measure prey harvesting * Validation trials of electronic equipment * Experimental Design (phase 2: ecological experiments) * Integrated, question driven, field experiments Some components of this work will run contemporaneously (eg. development of molecular and electronic tools). This project has now been completed. The novel DNA based methods for studying animal diet have been researched thoroughly in controlled conditions and demonstrated to be useful and an advance on existing methods. The DNA based dietary methods have also been successfully applied to studying the diet of Blue whales, Fin whales, Antarctic fur seals, Macaroni penguins, Antarctic krill and bottlenose dolphins.

  • INDICATOR DEFINITION Count of all adult females, fully weaned pups and dead pups hauled out on, or close to, the day of maximum cow numbers, set for October 15. TYPE OF INDICATOR There are three types of indicators used in this report: 1.Describes the CONDITION of important elements of a system; 2.Show the extent of the major PRESSURES exerted on a system; 3.Determine RESPONSES to either condition or changes in the condition of a system. This indicator is one of: CONDITION RATIONALE FOR INDICATOR SELECTION Elephant seals from Macquarie Island are long distance foragers who can utilise the Southern Ocean both west as far as Heard Island and east as far as the Ross Sea. Thus their populations reflect foraging conditions across a vast area. The slow decline in their numbers (-2.3% annually from 1988-1993) suggests that their ocean foraging has been more difficult in recent decades. Furthermore, interactions with humans are negligible due to the absence of significant overlap in their diet with commercial fisheries. This suggests that changes in 'natural' ocean conditions may have altered aspects of prey availability. It is clear that seal numbers are changing in response to ocean conditions but at the moment these conditions cannot be specified. DESIGN AND STRATEGY FOR INDICATOR MONITORING PROGRAM Spatial Scale: Five beaches on Macquarie Island (lat54 degrees 37' 59.9' S, long 158 degrees 52' 59.9' E): North Head to Aurora Point; Aurora Point to Caroline Cove; Garden Cove to Sandy Bay; Sandy Bay to Waterfall Bay; Waterfall Bay to Hurd Point. Frequency: Annual census on 15th October Measurement Technique: Monitoring the Southern Elephant Seal population on Macquarie island requires a one day whole island adult female census on October 15 and a daily count of cow numbers, fully weaned pups and dead pups on the west and east isthmus beaches throughout October. Daily cow counts during October, along the isthmus beaches close to the Station, provide data to identify exactly the day of maximum numbers. The isthmus counts are recorded under the long-established (since 1950) harem names. Daily counts allow adjustment to the census totals if the day of maximum numbers of cows ashore happens to fall on either side of October 15. Personnel need to be dispersed around the island by October 15 so that all beaches are counted for seals on that day. This has been achieved successfully for the last 15 years. On the day of maximum haul out (around 15th October) the only Elephant seals present are cows, their young pups and adult males. The three classes can be readily distinguished and counted accurately. Lactating pups are not counted, their numbers are provided by the cow count on a 1:1 proportion. The combined count of cows, fully weaned pups and dead pups provides an index of pup production. The count of any group is made until there is agreement between counts to better than +/- 5%. Thus there is always a double count as a minimum; the number of counts can reach double figures when a large group is enumerated. The largest single group on Macquarie Island is that at West Razorback with greater than 1,000 cows; Multiple counts are always required there. RESEARCH ISSUES Much research has been done already to acquire demographic data so that population models can be produced. Thus there will be predicted population sizes for elephant seals on Macquarie Island in 2002 onwards and the annual censuses will allow these predictions to be tested against the actual numbers. The censuses are also a check on the population status of this endangered species. LINKS TO OTHER INDICATORS

  • Metadata record for data from ASAC Project 1117 See the link below for public details on this project. ---- Public Summary from Project ---- The aim of this project is to determine how feasible it is to regularly sample the pelagic under-ice community during winter at a coastal site near Mawson. Very few attempts have been made to sample the water column under the ice during the winter months and the processes that occur during this period remain critical gaps in our knowledge of the Antarctic marine ecosystem. ------------------------------------- The pelagic community under the Mawson sea ice was sampled during the winter of 2001 using 'light trap' sampling devices. The 'light traps' were tested at various depths in a range of configurations to determine whether they were an appropriate instrument to sample the winter pelagic community under the ice. Fourteen successful deployments of the light traps were made on seven separate occasions from 12 June to 12 September 2001. The light traps were deployed at three different depths - the underside of the sea ice, mid water, and just above the sea floor. Two different light sources were used to attract the animals, namely fluorescent tubes and cyalume sticks. Two different configurations of the traps were tested to retain the animals inside the trap - one with plastic flaps to trap the animals, the other with no flaps, allowing the animals to move freely inside the trap. The light traps were deployed and retrieved during darkness to avoid any influence of ambient light. The objectives of the project were met and it is assessed that the pelagic community in winter can be effectively sampled using this methodology. A result of particular interest is the success of the traps in capturing Pleuragramma antarctica, a species which has proven difficult to capture using traditional sampling methods such as nets.

  • This study employs data from two satellite-borne instruments namely, the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and the Total Ozone Mapping Spectrometer (TOMS). This work was completed as part of an honours project under ASAC project 2210 (UV climate over the Southern Ocean south of Australia, and its biological impact). Further information about the project is available in the word document available for download (extract from the honours thesis). The fields in this dataset are: Region Year Day (Julian Day) Pixels (number of cloud free pixels from SeaWiFS sensor that were available for analysis) Mean Chlorophyll (milligrams per cubic metre) (derived from cloud free pixels) Standard Deviation Ozone (dobson units) from the TOMS sensor (average for whole region).

  • A polygonised bathymetric dataset covering the Southern Ocean. The dataset was compiled from data sourced from the General Bathymetric Chart of the Oceans (GEBCO) Digital Atlas, 2003 edition, and the Antarctic Digital Database, version 4.

  • This project used computer-based modelling and existing field data to analyse the production and cycling of dimethylsulphide (DMS) and predicted its role in climate regulation in the Antarctic Southern Ocean. From the Final Report: Aims (i) To calibrate an existing dimethylsulphide (DMS) production model in a section of the Antarctic Southern Ocean. (ii) To use the calibrated model to investigate the effect of GCM-predicted climate change on the production and sea-to-air flux of DMS under current and enhanced greenhouse climatic conditions. (iii) To provide regional assessments of the sign and strength of the DMS-climate feedback in the Southern Ocean. Characteristics of Study Region: Our study region extends from 60-65 degrees S, 123-145 degrees E in the Antarctic Southern Ocean, and was the site of a major biological study in the austral summer of 1996 (Wright and van den Enden, 2000). Field observations show that a short-lived spring-summer bloom event is typical of these waters (El-Sayed, 1988, Skerratt et al. 1995); however there can be high interannual variability in the timing and magnitude of the bloom (Marchant and Murphy, 1994). The phytoplankton community structure has been described by Wright and van den Enden (2000), who report maximum chlorophyll (Chl) concentrations during January-March in the range (1.0-3.4) microgL-1. During this survey, macronutrients did not limit phytoplankton growth. Thermal stratification of the mixed layer was strongly correlated with high algal densities, with strong subsurface Chl maxima (at the pycnocline) observed. The mixed layer depth determined both phytoplankton community composition and maximum algal biomass. Coccolithophorids (noted DMS producers) were favoured by deep mixed layers, with diatoms dominating the more strongly stratified waters. Pycnocline depth varied from 20-50 m in open water. Algal abundance appeared to be controlled by salp and krill grazing. Field data support the existence of seasonal DMS production in the Antarctic region. However, a large range in DMS concentrations has been reported in the open ocean , reflecting both seasonal and spatial variability (Gibson et al., 1990, Berresheim, 1987; Fogelqvist, 1991). Blooms of the coccolithophores, and prymnesiophytes such as Phaeocystis, form a significant fraction (~23%) of the algal biomass (Waters et al 2000). Concentrations of DMS in sea ice are reported to be very high (Turner et al. 1995) and may be responsible for elevated water concentrations during release from melt water (Inomata et al. 1997). Field measurements of dissolved DMS made in the study region have been summarised by Curran et al. (1998). DMS concentrations were variable in the open ocean during spring and summer (range: 0-22 nM), with the higher values recorded in the seasonal ice zone and close to the Antarctic continent. Zonal average monthly mean DMS in the study region have been estimated by Kettle et al. (1999). (See downloadable full report for reference list). A copy of the referenced publication is also available for download by AAD staff. It contains the modelling information.

  • Metadata record for data from ASAC Project 933 See the link below for public details on this project. Australian Antarctic and Southern Ocean Profiling Project (AASOPP) was the outcome of a government decision in 1999 that it would carry out the necessary work to place Australia in a position to be able to prepare a submission defining the outer limit the 'extended Continental Shelf' (ECS) off the Australian Antarctic Territory (AAT). The ECS is the area of seabed/subsoil jurisdiction extending beyond the 200 nautical mile Exclusive Economic Zone, and is defined by Article 76 of the United Nations Convention on the Law of the Sea. AASOPP was set up in 2000, under the management of the Department of Finance and Administration and in consultation with the Australian Antarctic Division, to undertake the acquisition and interpretation of the data that would underpin a UN submission. Technical aspects of the work were largely the responsibility of the Australian Geological Survey Organisation and the Australian Surveying and Land Information Group (later Geoscience Australia). Marine geophysical surveys were conducted in 2001/2 and 2002/3 by the primary contractors, FUGRO Geoteam supervised by AGSO (Geoscience Australia) using the vessels Geoarctic and Polar Duke (survey numbers GA227, GA228 and GA229). Data collected were seismic reflection, sonobuoy seismic refraction, magnetic and gravity profiles. Data processing was supervised by Geoscience Australia where they are archived. Seismic data were lodged with the SCAR Seismic Data Library. Law of the Sea interpretations were lodged as part of the Australian submission to the United Nations by November, 2004 with a request not to examine the Antarctic case until requested.

  • Environmental variables in the region of the Kerguelen Plateau compiled from different sources and provided in the ascii raster format. Mean surface and seafloor temperature, salinity and their respective amplitude data are available on the time coverage 1955-2012 and over five decades: 1955 to 1964, 1965 to 1974, 1975 to 1984, 1985 to 1994 and 1995 to 2012. N/A was set as the no data reference. Future projections are provided for several parameters: they were modified after the Bio-ORACLE database (Tyberghein et al. 2012). They are based on three IPCC scenarii (B1, AIB, A2) for years 2100 and 2200 (IPCC, 4th report).