From 1 - 4 / 4
  • Overview of the project and objectives: Assessing the contribution of the different N substrates to the primary production process, such as the biogenic silica production and dissolution in the Antarctic sea-ice provides a means to understand the biogeochemical system functioning. In such a semi closed-type system, assess incorporation rates of HCO3-, NO3-, NH4+, SiOH4, BSi dissolution, nitrification, C-release in close-by ice-cores (3 ice-cores dedicated to (i) 13C-assimilation + 15NH4+ uptake rate, (ii) 13C-assimilation + 15NO3- uptake rate and nitrification, (iii) Biogenic silica production and dissolution via 30Si isotope tool) will allow improving the knowledge of system functioning. This is also closely linked to the thematic of iron availability since these experiments are done close to / on the Trace Metal site allowing us to hopefully propose a relatively complete image of biogeochemical activity and relationship with trace metals on this site. Methodology and sampling strategy: Most of the time we worked close to / directly on the Trace Metal site following precautions concerning TM sampling (clean suits etc.). When we worked close to the TM site, precautions were not such important because we don't need the same drastic precautions for our own sampling. We work together because we want to propose a set of data which helps to characterize the system of functioning in close relation with TM availability (for that, sampling location have to be as close as possible). 14C and 13C-incubation experiment intercalibration work were conducted on the Biosite (different place than TM site except for station 7) Incubation experiment samples are analyzed via (1) Elemental Analyzer - Isotope Ratio Mass Spectrometer (EA-IRMS) for carbon and nitrogen (VUB, Brussels, Belgium); (2) High Resolution Inductively Coupled Mass Spectrometer (HR-ICPMS) for silicon (RMCA, Brussels, Belgium).

  • To quantify the dietary preferences and trophic level consumption of post-breeding adult female Antarctic fur seals (Arctocephalus gazella), we analysed the carbon:nitrogen composition of whiskers and blood samples from the females. Females were captured towards the end of the lactation period (March/April) and whiskers and a blood sample were collected at this time. Females were generally recaptured just prior to or after giving birth the following season and a further whisker and blood sample were collected at this time. Metadata for each individual include: Site, GLS ID, year, flipper tag number, season, sampling date, tissue type, whisker segment number, cumulative length along whisker of the segment, d15N, d13C, percentage N, percentage C and CN ratio.

  • Overview of the project and objectives: To investigate whether the Nitrogen - Silicon - Carbon biogeochemical system functions in the Antarctic Marginal Ice Zone and shows spatial variability possibly induced by varying availability of Fe and other parameters in the region. This toolbox is part of project 4051 - samples were taken (1) on the same sea-ice site or very close than the one used for Trace Metal sampling; (2) via Trace Metal Rosette TMR; (3) via Conductivity Temperature and Depth CTD Rosette. It is also part of project 4073 since some intercalibration studies were conducted in collaboration with the primary production team. Three main tools were used which can be either independently or intricately studied. For this reason the complete set of sampling done for this stable isotope toolbox is summarized in one excel file which is duplicated and attached to three child metadata records. Same reasoning for raw data acquired on boar and on field information. This parent metadata record has thus three child metadata records. Each of the child metadata files explain individually the different approaches which were treated together by the same team to resolve the main question of sea-ice biogeochemical system functioning via the use of stable isotope ratio tools. The details of each are in the respective metadata records. The data are attached to this metadata record. METADATA FILES are: - 13C, 15N, 30Si in-situ incubation experiments during SIPEX 2 - Nitrogen and oxygen isotopic composition of nitrate during SIPEX 2 - Delta13C signal of brassicasterol and cholesterol in the Antarctic Sea-ice / Is there particulate barium in sea-ice?

  • The Holocene sea-ice project brings together for the first time, records from the Antarctic continent and deep sea sediments that will allow us to calibrate three sea-ice extent surrogates, validate their use in contrast to satellite observations and explore climatic influence on the physio-ecological environment over the last 10,000 years. Spreadsheet 1 (appendix A): Complete list of Accelerator Mass Spectrometry (AMS) dating completed on E27-23 from various identified sources with original 14CAge and reported error. Three dates identified as Burckle pers comm. here were provided by Dr Lloyd Burckle (LDEO) to Dr L. Armand for this work. Outlier attributions are identified; the term Averaged identifies the two samples where final calibrated dates were averaged in this work. All remaining AMS dates were converted to calendar ages using the linear-based CALIB07 (Stuiver and Reimer, 1993) with calibration to the Marine13 dataset (Reimer et al., 2013) at 95% confidence (sigma 2) and included a correction for the surface water reservoir age of ~752 years at the site of core E27-23 resolved from the marine radiocarbon reservoir correction database and software available from http://radiocarbon.LDEO.columbia.edu/ (Butzin et al., 2005). The percent Marine Carbon relative attribution is provided. The Median age (Cal Yr BP) used as the final age at each respective (mid) depth is provided. In Appendix A the dates are all ages in years, however some are uncalibrated ages and others are Cal yr BP (= calendar years before present). So in terms of headings in Table A: Raw 14C age yr BP - is the raw age provided by radiocarbon dating without any corrections applied. It is in years before present. Corrected raw age (RA=752) - is the raw age with a local RA (Reservoir Age) correction applied and is still in years before present. The remaining ages are calendar years before present having been calibrated. All formats follow recommendations for reporting raw 14C dates and their calibration ages. Spreadsheet 2 (appendix B): Comparison of calibration output from the input of accepted 14C dates using OXCAL 4.2 (Bronk Ramsey 2009; Blaauw 2010), and CALIB07 (Stuiver and Reimer, 1993), both using the Marine13 calibration curve (Reimer et al., 2013) at 95.4% confidence (sigma 2) and including a correction for the surface water reservoir age of ~752 years at the site of core E27-23. The calibration output difference between the median Cal Yr BP, regardless of calibration method employed, was greater than or equal to 40 Cal Yr BP. Calibration data from the output of CALIB07 has been used in this paper to determine chronostratigraphy. Spreadsheet 3 (appendix C): The foraminiferal stable isotope data from E27-23. Ratios of oxygen (delta 18O) measured from the planktonic foraminifer Neogloboquadrina pachyderma sinistral (greater than 150 microns). Isotope values are reported as per mil (%) deviations relative to the Vienna Peedee Belemnite (VPDB). Spreadsheet 4 (appendix D): The paleo winter sea-ice concentration (wSIC) estimates for marine sediment core SO136-111. The calendar ages, in thousands of years before present (kyr BP), are provided for each sample from core SO136-111. For each of the samples in core SO136-111, we have provided the estimates winter sea-ice concentration (%), along with the associated lower and upper bounds for the 95% confidence interval around the estimated winter sea-ice concentration (%), for both GAM/WSI/13 and GAM/WSI/ETS. The final two columns provide the estimated average annual monthly sea-ice cover for each sample within core SO136-111, originally estimated using the Modern Analogue Technique, by Crosta et al. (2004). Finally, we provide the estimated summer sea surface temperature, again using the Modern Analogue Technique, from Crosta et al. 2004. Spreadsheet 5 (appendix E): The paleo wSIC estimates for marine sediment core E27-23. The calendar ages, in thousands of years before present are provided for each sample from core E27-23. For each of the samples in core E27-23, we have provided the estimated winter sea-ice concentration (%), along with the associated lower and upper bounds for the 95% confidence interval around the estimates for winter sea-ice concentration (%).