Keyword

GPS > Global Positioning System

47 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 47
  • Three Trident Sensors Helix beacons (Unit 1,2,3) were deployed about on ice floes close to latitude 62.8 S and longitude 29.8 E on 4th July 2017 to measure sea ice drift. The region where the instruments were deployed (Antarctic Marginal Ice Zone) consisted of first-year ice on average ~50 cm thick. The instruments were deployed by hand by three people, lowered by crane from the ship to the ice on a basket cradle on floes ~5 m in diameter. The temporal resolution is 4 hours. The survival of the sensors depended on staying fixed to the floe and the battery life. Unit 1 provided GPS location from the 5th July 2017 to 1st December 2017, started at 62.84 S and 30.20 E and finished at 61.55 S and 55.99 E. Unit 2 provided GPS location from the 5th July 2017 to 3rd August 2017, started at 62.83 S and 30.20 E and finished at 62.36 S and 31.57 E. Unit 3 provided GPS location from the 5th July 2017 to 15st August December 2017, started at 62.59 S and 29.98 E and finished at 61.16 S and 35.60 E. In the .xlsx submission sheet 1 refers to Unit 1, sheet 2 to Unit 2, and sheet 3 to Unit 3. First column is the Unit Identifier (1,2,3) Second column is the date in the format day/month/year Third column is the UTC time in the format hh:mm:ss Fourth column is the latitude in degrees and decimals, the negative refers to South Fifth column is the longitude in degrees and decimals, the positive refers to East

  • Results from a February 2007 survey of the Vestfold Hills coastline and offshore islands for used and disused southern elephant seal wallows. The data here are point locations of the wallows, not the extents or boundaries of the wallows. The table below gives the coordinates (decimal degrees) for the elephant seal wallows found, their unofficial names and the wallow status as used or disused at the time of survey. Data were used in the 2018 Vestfold Hills/Davis Station Helicopter map: Wallow name Latitude Longitude Status Hawker Island -68.637360 77.840040 Used Hawker Island -68.634950 77.841310 Used Hawker Island -68.632180 77.841560 Used Mule Island -68.647860 77.825900 Unused Mule Island -68.646650 77.823920 Unused Zappert Point -68.505100 78.081020 Unused Old Wallow -68.598345 77.937185 Used Davis beach -68.577926 77.967032 Used Heidemann Bay -68.592067 77.945325 Used North of station -68.571916 77.971011 Used

  • This terrestrial dataset was collected at Ursula Harris’s behest by Craig Hamilton and a Naval Survey team on 09 January 2018 when sea conditions prevented the team from taking bathymetric measurements. This survey was intended to fill gaps in the existing Mawson Station survey data and includes 29 previously unrecorded features comprised of bollards, HF towers, flagpoles, masts, antennae, ionosonde transmitter and receiver, the Mawson Signpost and the Douglas Mawson Bust.

  • GPS tag deployments on Snow petrels (Pagodroma nivea) in 2011 from Bechervaise Island, Mawson Coast and Filla Island, Rauer Group, as part of AAS project 2722. Identifying potential threats from a changing environment on snow petrel populations requires understanding key ecological processes and their driving factors. This project focuses on determining driving factors for the species' at-sea distribution and foraging habitat. The data will be linked to spatio-temporally coincident data of biological and physical characteristics of the ecosystem to develop explanatory models and, where possible, predictive models to explore the outcomes of plausible scenarios of future environmental change on snow petrel populations. Tags were deployed on Snow Petrels in the Mawson and Davis areas for tracking purposes. The types of tags used were BAS (British Antarctic Survey) geolocators (Mk18) The GLS data are in hexadecimal format, and will need appropriate software to interpret them.

  • The broadscale distribution of flora (lichens, mosses, non-marine algae)and fauna (penguins, flying birds, seals)in the Stillwell Hills was mapped using GPS technology. Samples of flora were collected for taxonomic identification. Data were recorded and catalogued in shapefiles.

  • This GIS dataset is the result of the interpolation of bathymetry from depth measurements made in Long and Tryne Fjords in the Vestfold Hills, Antarctica (see Entry: VH_bathy_99). The Topogrid command within the ArcInfo GIS software, version 8.0.2, was used to do the interpolation. Coastline and spot height (heights above sea level) data, extracted from the Australian Antarctic Data Centre's Vestfold Hills topographic GIS dataset (see Entry: vest_hills_gis), was also used as input data to optimise the interpolation close to the coastline. See related URLs for a map showing the interpolated bathymetry.

  • Raw GPS and ship motion data collected during the Antarctic Circumnavigation Expedition 2016/2017. Waves in the Southern Ocean are the biggest on the planet. They exert extreme stresses on the coastline of the Sub-Antarctic Islands, which affects coastal morphology and the delicate natural environment that the coastline offers. In Antarctic waters, the sea ice cover reflects a large proportion of the wave energy, creating a complicated sea state close to the ice edge. The remaining proportion of the wave energy penetrates deep into the ice-covered ocean and breaks the ice into relatively small floes. Then, the waves herd the floes and cause them to collide and raft. There is a lack of field data in the Sub-Antarctic and Antarctic Oceans. Thus, wave models are not well calibrated and perform poorly in these regions. Uncertainties relate to the difficulties to model the strong interactions between waves and currents (the Antarctic Circumpolar and tidal currents) and between waves and ice (reflected waves modify the incident field and ice floes affect transmission into the ice-covered ocean). Drawbacks in wave modelling undermine our understanding and ability to protect this delicate ocean and coastal environment. By installing a Wave and Surface Current Monitoring System (WaMoS II, a marine X-Band radar) on the research vessel Akademic Thresnikov and using the meteo-station and GPS on-board, this project has produced a large database of winds, waves and surface currents. Dara were collected during the Antarctic Circmumnavigaion Expedition, which took place from Dec. 2016 to Mar. 2017. The instrumentation operated in any weather and visibility conditions, and at night, monitoring the ocean continuously over the entire Circumnavigation. Records can support 1. the assessment of metocean conditions in the Southern Oceans; and 2. calibration and validation of wave and global circulation models. Data - AAS_4434_ACE_GPS contains basic metereological conditions acquired form the ship’s meteo-station, gepgraphical coordinates (latitude, longitude and altitude) from the ship’s GPS and ship motion data from the ship’s Inertial Measurement Unit (IMU). These data are stored as time series with a sampling frequency of 1Hz.

  • This dataset is a bathymetric grid of the region 60E to 90E and 48.45S to 70S, created in a geographic coordinate system based on a WGS84 horizontal datum. The grid has a cell size of 0.005 degrees. Most of the work involved creating a bathymetric grid of the region 60E to 90E and 55S to 70S which was generated from the latest available multibeam swath bathymetry, fisheries' surveys and satellite altimetry data. A report outlining the development of this grid is available for download (see the related url below). This grid was then merged with the bathymetric grid described by the metadata record 'Bathymetric Grid of Heard Island - Kerguelen Plateau Region (2005)', which covers the region 68E to 80E and 48S to 56S. Hence the final grid has two 'No data' areas between 48.45S to 55S: 60E to 68E and 80E to 90E. The final grid is available for download as a geotiff and ArcInfo ascii file and contours derived from the grid are available for download as a shapefile (see the related urls below).

  • The foraging ecology of three fulmarine petrels including Cape petrels, Southern fulmars and Antarctic petrels were investigated at Hop Island during the 2015/16 austral summer. Two datasets were generated: 1) tracking data from Fulmarine petrels, and 2) stable isotope analysis of blood, feathers and egg shells. Tracking data were collected using Ecotone GPS trackers attached to the birds back feathers with tape. Location data has been interpolated using great circle distance to a time step of 15 minutes and include a record of whether the bird dived during that time period or not. Each location point was assigned a breeding stage (incubation or chick rearing) based on individual nest activities. Stable isotope ratios of carbon (13C/12C) and nitrogen (15N/14N) were determined by analysing 1 mg aliquots through continuous flow - elemental analysis - isotope ratio mass spectrometry (CF-EA-IRMS). Isotopic values of blood reflect approximately the last 52 days before sampling and thus the incubation period of all three species. Egg membranes and feathers remain metabolically inert after formation, and hence reflect the trophic niche during the pre-laying and moult period, respectively. We collected moult feathers during the chick-rearing period and therefore assumed that these were formed one year prior to the collection date and thus represent the trophic niche of the chick-rearing period one year earlier (austral summer 2014-15).

  • Two Waves In Ice Observation Systems (Kohout, Alison L., Bill Penrose, Scott Penrose, and Michael J M Williams. 2015. “A Device for Measuring Wave-Induced Motion of Ice Floes in the Antarctic Marginal Ice Zone.” Annals of Glaciology 56 (69): 415–24. doi:10.3189/2015AoG69A600) were deployed about 1.5 km apart on ice floes close to latitude 62.8 S and longitude 29.8 E on 4th July 2017 (NYU1 and NYU2). The region where the instruments were deployed (Antarctic Marginal Ice Zone) consisted of first-year ice on average 40 – 60 cm thick. The instruments were deployed by hand by three people, lowered by crane from the ship to the ice on a basket cradle. NYU 1 was deployed on a rectangular ice floe of length 8 m and width 3 m, with a thickness of about 40 – 50 cm. NYU 2 was deployed on a triangular ice floe of length 4 m and thickness 40 cm. The temporal resolution is variability (every 15 minutes to 2 hourly). The survival of the sensors depended on staying fixed to the floe and the battery life. On 12th July, the sampling rate of NYU 2 was reduced from 15 minutes to 2 hourly to extend the battery life. On 13th July, NYU 1 overheated and the battery dropped below the operating voltage. NYU 2 continued to send back data for another six days, but then stopped sending data for an unknown reason on 19th July. Records can support 1. the assessment of metocean conditions in the Southern Oceans; and 2. calibration and validation of wave and global circulation models.