GLOBAL WARMING
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
This indicator is no longer maintained, and is considered OBSOLETE. INDICATOR DEFINITION The fecundity (pupping rates) of female fur seals and the growth rates of their pups relative to changes in sea surface temperatures (local primary production) in the vicinity of Macquarie Island. TYPE OF INDICATOR There are three types of indicators used in this report: 1.Describes the CONDITION of important elements of a system; 2.Show the extent of the major PRESSURES exerted on a system; 3.Determine RESPONSES to either condition or changes in the condition of a system. This indicator is one of: CONDITION RATIONALE FOR INDICATOR SELECTION A highly negative correlation has been detected between sea surface temperatures in the vicinity of Macquarie Island and fur seal fecundity and pup growth. A dataset of over ten years has shown that autumn sea-surface temperatures are highly negatively correlated with female fecundity in the following breeding season. Rather than the reproductive success in terms of fecundity and pup growth being seen simply as a correlate of SST and presumably ocean productivity, the measure is much more than this. What the dataset from the Macquarie Island fur seal populations is rather more unique, in that they indicate how environmental variability effects the reproductive success of animals at annual and lifetime scales. This is especially important as we can now show what impacts environmental/climatic phenomena such as the Antarctic Circumpolar Wave, and global warming will have on fur seals, and how changes in the environment may impact on the viability of populations. In this situation, the data clearly suggest that warmer ocean temperatures significantly effect the reproductive success of fur seals. Sustained warmer temperatures would therefore impose demographic constraints on populations. DESIGN AND STRATEGY FOR INDICATOR MONITORING PROGRAM Spatial scale: SST data are obtained from a 1 degree square just north of the island that represents the region in which most females obtain food throughout their lactation period. Frequency: Data on the reproductive success of fur seals is to be collected annually. Measurement technique: Each breeding season (November-January), the reproductive success of tagged females is monitored, including their pupping success, and the growth rates of their pups. RESEARCH ISSUES LINKS TO OTHER INDICATORS
-
A collection of about 20 isolates of Antarctic microalgae from the Windmill Islands region, around Casey Station has been established in the University of Malaya Algae Culture Collection (UMACC). The Antarctic microalgae in the collection includes Chlamydomonas, Chlorella, Stichococcus, Navicula. Ulothrix and Chlorosarcina. Comparative studies on the effect of global warming and UVR stress on these Antarctic microalgae and the tropical collection are being conducted. From the abstract of one of the referenced papers: The growth, biochemical composition and fatty acid profiles of six Antarctic microalgae cultured at different temperatures, ranging from 4, 6, 9, 14, 20 to 30 degrees C, were compared. The algae were isolated from seawater, freshwater, soil and snow samples collected during our recent expeditions to Casey, Antarctica, and are currently deposited in the University of Malaya Algae Culture Collection (UMACC). The algae chosen for the study were Chlamydomonas UMACC 229, Chlorella UMACC 234, Chlorella UMACC 237, Klebsormidium UMACC 227, Navicula UMAC 231 and Stichococcus UMACC 238. All the isolates could grow at temperatures up to 20 degrees C; three isolates, namely Navicula UMACC 231 and the two Chlorella isolates (UMACC 234 and UMACC 237) grew even at 30 degrees C. Both Chlorella UMACC 234 and Stichococcus UMAC 238 had broad optimal temperatures for growth, ranging from 6 to 20 degrees C (growth rate = 0.19 - 0.22 per day) and 4 to 14 degrees C (growth rate = 0.13 - 0.16 per day), respectively. In constrast, optimal growth temperatures for Navicula UMACC 231 and Chlamydomonas UMACC 229 were 4 degrees C (growth rate = 0.34 per day) and 6 to 9 degrees C (growth rate = 0.39 - 0.40 per day), respectively. The protein content of the Antarctic algae was markedly affected by culture temperature. All except Navicula UMACC 231 and Stichococcus UMACC contained higher amount of proteins when grown at low temperatures (6-9 degrees C). The percentage of PUFA, especially 20:5 in Navicula UMACC 231 decreased with increasing culture temperature. However, the percentages of unsaturated fatty acids did not show consistent trend with culture temperature for the other algae studied. There are three spreadsheets available in the download file. ASAC_2590 - provides detail about where each species of algae was collected from. ASAC_2590a - provides data from Teoh Ming-Li et al (2004) ASAC_2590b - provides data from Wong Chiew-Yen et al (2004) The fields in this dataset are: Isolate Culture Collection number Origin (Location) Fatty acids saturated fatty acids polyunsaturated fatty acids monounsaturated fatty acids Temperature growth rate PAR UVB