Keyword

GEOGRAPHIC REGION > POLAR

1700 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 1700
  • Metadata record for data from ASAC Project 545 See the link below for public details on this project. From the abstract of the referenced paper: Blood was collected for haematological, red cell enzyme and red cell metabolic intermediate studies from 20 Southern elephant seals Mirounga leonina. Mean haematological values were: haemoglobin (Hb) 22.4 plus or minus 1.4 g/dl, packed cell volume (PCV) 54.2 plus or minus 3.8%, mean cell volume (MCV) 213 plus or minus 5 fl and red cell count (RCC) 2.5 x 10 to power 12 / l. Red cell morphology was unremarkable. Most of the red cell enzymes showed low activity in comparison with human red cells. Haemoglobin electrophoresis showed a typical pinniped pattern, ie two major components. Total leucocyte counts, platelet counts, and coagulation studies were within expected mammalian limits. Eosinophil counts varied from 0.5 x 10 to power 9 / l (5%-49%), and there was a very wide variation in erythrocyte sedimentation rates, from 3 to 60mm/h.

  • Metadata record for data from ASAC Project 1119 See the link below for public details on this project. A marked bend in the Hawaiian-Emperor seamount chain supposedly resulted from a recent major reorganization of the plate-mantle system there 50 million years ago. Although alternative mantle-driven and plate-shifting hypotheses have been proposed, no contemporaneous circum-Pacific plate events have been identified. We report reconstructions for Australia and Antarctica that reveal a major plate reorganization between 50 and 53 million years ago. Revised Pacific Ocean sea-floor reconstructions suggest that subduction of the Pacific-Izanagi spreading ridge and subsequent Marianas/Tonga-Kermadec subduction initiation may have been the ultimate causes of these events. Thus, these plate reconstructions solve long-standing continental fit problems and improve constraints on the motion between East and West Antarctica and global plate circuit closure.

  • General overview The following datasets are described by this metadata record, and are available for download from the provided URL. - Raw log files, physical parameters raw log files - Raw excel files, respiration/PAM chamber raw excel spreadsheets - Processed and cleaned excel files, respiration chamber biomass data - Raw rapid light curve excel files (this is duplicated from Raw log files), combined dataset pH, temperature, oxygen, salinity, velocity for experiment - Associated R script file for pump cycles of respirations chambers #### Physical parameters raw log files Raw log files 1) DATE= 2) Time= UTC+11 3) PROG=Automated program to control sensors and collect data 4) BAT=Amount of battery remaining 5) STEP=check aquation manual 6) SPIES=check aquation manual 7) PAR=Photoactive radiation 8) Levels=check aquation manual 9) Pumps= program for pumps 10) WQM=check aquation manual #### Respiration/PAM chamber raw excel spreadsheets Abbreviations in headers of datasets Note: Two data sets are provided in different formats. Raw and cleaned (adj). These are the same data with the PAR column moved over to PAR.all for analysis. All headers are the same. The cleaned (adj) dataframe will work with the R syntax below, alternative add code to do cleaning in R. Date: ISO 1986 - Check Time:UTC+11 unless otherwise stated DATETIME: UTC+11 unless otherwise stated ID (of instrument in respiration chambers) ID43=Pulse amplitude fluoresence measurement of control ID44=Pulse amplitude fluoresence measurement of acidified chamber ID=1 Dissolved oxygen ID=2 Dissolved oxygen ID3= PAR ID4= PAR PAR=Photo active radiation umols F0=minimal florescence from PAM Fm=Maximum fluorescence from PAM Yield=(F0 – Fm)/Fm rChl=an estimate of chlorophyll (Note this is uncalibrated and is an estimate only) Temp=Temperature degrees C PAR=Photo active radiation PAR2= Photo active radiation2 DO=Dissolved oxygen %Sat= Saturation of dissolved oxygen Notes=This is the program of the underwater submersible logger with the following abreviations: Notes-1) PAM= Notes-2) PAM=Gain level set (see aquation manual for more detail) Notes-3) Acclimatisation= Program of slowly introducing treatment water into chamber Notes-4) Shutter start up 2 sensors+sample…= Shutter PAMs automatic set up procedure (see aquation manual) Notes-5) Yield step 2=PAM yield measurement and calculation of control Notes-6) Yield step 5= PAM yield measurement and calculation of acidified Notes-7) Abatus respiration DO and PAR step 1= Program to measure dissolved oxygen and PAR (see aquation manual). Steps 1-4 are different stages of this program including pump cycles, DO and PAR measurements. 8) Rapid light curve data Pre LC: A yield measurement prior to the following measurement After 10.0 sec at 0.5% to 8%: Level of each of the 8 steps of the rapid light curve Odessey PAR (only in some deployments): An extra measure of PAR (umols) using an Odessey data logger Dataflow PAR: An extra measure of PAR (umols) using a Dataflow sensor. PAM PAR: This is copied from the PAR or PAR2 column PAR all: This is the complete PAR file and should be used Deployment: Identifying which deployment the data came from #### Respiration chamber biomass data The data is chlorophyll a biomass from cores from the respiration chambers. The headers are: Depth (mm) Treat (Acidified or control) Chl a (pigment and indicator of biomass) Core (5 cores were collected from each chamber, three were analysed for chl a), these are psudoreplicates/subsamples from the chambers and should not be treated as replicates. #### Associated R script file for pump cycles of respirations chambers Associated respiration chamber data to determine the times when respiration chamber pumps delivered treatment water to chambers. Determined from Aquation log files (see associated files). Use the chamber cut times to determine net production rates. Note: Users need to avoid the times when the respiration chambers are delivering water as this will give incorrect results. The headers that get used in the attached/associated R file are start regression and end regression. The remaining headers are not used unless called for in the associated R script. The last columns of these datasets (intercept, ElapsedTimeMincoef) are determined from the linear regressions described below. To determine the rate of change of net production, coefficients of the regression of oxygen consumption in discrete 180 minute data blocks were determined. R squared values for fitted regressions of these coefficients were consistently high (greater than 0.9). We make two assumptions with calculation of net production rates: the first is that heterotrophic community members do not change their metabolism under OA; and the second is that the heterotrophic communities are similar between treatments. #### Combined dataset pH, temperature, oxygen, salinity, velocity for experiment This data is rapid light curve data generated from a Shutter PAM fluorimeter. There are eight steps in each rapid light curve. Note: The software component of the Shutter PAM fluorimeter for sensor 44 appeared to be damaged and would not cycle through the PAR cycles. Therefore the rapid light curves and recovery curves should only be used for the control chambers (sensor ID43). The headers are PAR: Photoactive radiation relETR: F0/Fm x PAR Notes: Stage/step of light curve Treatment: Acidified or control The associated light treatments in each stage. Each actinic light intensity is held for 10 seconds, then a saturating pulse is taken (see PAM methods). After 10.0 sec at 0.5% = 1 umols PAR After 10.0 sec at 0.7% = 1 umols PAR After 10.0 sec at 1.1% = 0.96 umols PAR After 10.0 sec at 1.6% = 4.32 umols PAR After 10.0 sec at 2.4% = 4.32 umols PAR After 10.0 sec at 3.6% = 8.31 umols PAR After 10.0 sec at 5.3% =15.78 umols PAR After 10.0 sec at 8.0% = 25.75 umols PAR This dataset appears to be missing data, note D5 rows potentially not useable information See the word document in the download file for more information.

  • This terrestrial dataset was collected at Ursula Harris’s behest by Craig Hamilton and a Naval Survey team on 09 January 2018 when sea conditions prevented the team from taking bathymetric measurements. This survey was intended to fill gaps in the existing Mawson Station survey data and includes 29 previously unrecorded features comprised of bollards, HF towers, flagpoles, masts, antennae, ionosonde transmitter and receiver, the Mawson Signpost and the Douglas Mawson Bust.

  • The RAN Australian Hydrographic Service conducted hydrographic survey HI176 at Macquarie Island in December 1993. The main survey area was adjacent to the north-east coast between North Head and The Nuggets. Survey lines were also followed part way down the west coast of the island and in the vicinity of Judge and Clerk Islets and Bishop and Clerk Islets. The survey dataset, which includes metadata, was provided to the Australian Antarctic Data Centre by the Australian Hydrographic Office and is available for download from a Related URL in this metadata record. The survey was lead by LT A.J.Withers. The data are not suitable for navigation.

  • Bathymetric contours and height range polygons of approaches to Mawson Station, derived from RAN Fair sheet, Aurora Australis and GEBCO soundings.

  • Bathymetric Contours and height range polygons of approaches to Davis Station, derived from RAN Fair sheet, Aurora Australis and GEBCO soundings.

  • Trace metal concentrations are reported in micrograms per gram of sediment in core C012-PC05 (64⁰ 40.517’ S, 119⁰ 18.072’ E, water depth 3104 m). Each sediment sample (100-200mg) was ground using a pestle and mortar and digested following an initial oxidation step (1:1 mixture of H2O2 and HNO3 acid) and open vessel acid on a 150 degree C hotplate using 2:5:1 mixture of concentrated distilled HCl, HNO3 and Baseline Seastar HF acid. After converting the digested sample to nitric acid, an additional oxidation step was performed with 1:1 mixture of concentrated distilled HNO3 and Baseline Seastar HClO4 acid. A 10% aliquot of the final digestion was sub-sampled for trace metal analyses. Trace metal concentrations were determined by external calibration using an ELEMENT 2 sector field ICP-MS from Thermo Fisher Scientific (Bremen, Germany) at Central Science Laboratory (University of Tasmania). The following elements were analysed in either low (LR) or medium resolution (MR): Sr88(LR), Y89(LR), Mo95(LR), Ag107(LR), Cd111(LR), Cs133(LR), Ba137(LR), Nd146(LR), Tm169(LR), Yb171(LR), Tl205(LR), Pb208(LR), Th232(LR), U238(LR), Na23(MR), Mg24(MR), Al27(MR), P31(MR), S32(MR), Ca42(MR), Sc45(MR), Ti47(MR), V51(MR), Cr52(MR), Mn55(MR), Fe56(MR), Co59(MR), Ni60(MR), Cu63(MR), Zn66(MR).

  • This is a digital version of the grid reference map used to plot all sightings of Weddell seals in the Vestfold Hills. The point of origin is the same as the original map and each grid cell is numbered with the same numbering scheme. This can be used to plot any data using the same numbering scheme by joining (ArcInfo) or linking (ArcView) records to this coverage's polygon attribute table (pat) through the item GRIDREF. The original map was a 1:100 000 map of the Vestfolds, provided by Harry Burton, with a grid drawn over it. The grid references were given as either six or four figure values on which field scientists are to plot their data. This map has the following Antarctic Division drawing reference number: M/75/05A Some research with John Cox revealed that this grid was drawn up over a map digitised from another map with the following specifications: Scale 1: 100 000 Date: 1958 (reprinted 1972) Projection: Polyconic Published by: Division of National Mapping, Canberra Reference number: NMP/58/084 Data are referenced to a 'grid' of 1 minute spacing in x axis and 30 second spacing in y axis. The point of origin is apparently 68 20 S 77 48 E. There are 45 rows and 47 columns. The 'grid reference' is in fact in geographic coordinates (but using arbitrary units) so the projection of the original map became irrelevant. The procedure adopted to create a new digital grid was as follows: (Carried out in Arc/Info) 1. Generate a coverage using the original 'grid references'. 2. Tics were also generated using the corners of the 'grid reference' system. 3. A new coverage was created with tics at the same locations but given the true latitude/longitude vales. 4. The original coverage was then transformed to the new coverage based on the new tic values. 5. The new coverage was then projected from geographic coordinates to UTM metres. The data locations were then viewed in Arc/Info using a coverage of the coastline supplied by the Mapping Officer, Antarctic Division. This had previously been determined to be in the UTM projection. An offset was clearly visible between the data locations and the coastline. In order to determine whether the offset was more or less uniform, ten locations were plotted from the original data onto the original map using the 'grid'. Finally a manual corrected was made by moving all the data locations by a uniform distance of 508 metres north and 68 metres west. Information from John van den Hoff, February 2019: The grid cells were originally labelled from 1 to 47 along the x axis and 1 to 45 along the y axis. The four digit values in the GRIDREF field of the attribute table are the x value followed by the y value. To avoid confusion between x and y values, the grid was later revised so that the y values were prefixed with a ‘1’ so for example 01 became 101. The GRIDREF_X and GRIDREF_Y fields have the x and y values of the revised grid. This needs to be kept in mind when data is sourced from field books. The map shows the revised grid.

  • Scanned copy of an acoustics log from Casey Station. Data were collected during 1997. There is no accompanying information to go with the log.