From 1 - 10 / 26
  • Metadata record for data expected ASAC Project 2382 See the link below for public details on this project. This entry contains: Locations for sampling sites for ASAC project 2382 on voyage 3 of the Aurora Australis in the 2004/5 season, collected between December and February of 2004/5; CTD bottle-derived seawater viscosity data and CTD bottle-derived in vivo fluorescence data. There are four spreadsheet files in this download file. Each spreadsheet file contains several worksheets. 1) I9_Stations.xls: Transect 1 (CLIVAR I9 = 'I9') station and sampling details: CTD stations, CTD profiles, Surface samples. 2) PET_Stations.xls: Transect 2 (Kerguelen Plateau and Princess Elizabeth Trough = 'PET') station and sampling details: CTD stations, CTD profiles. 3) Viscosity.xls: Viscosity data. 4) Fluorescence.xls: In vivo fluorescence data. For all files -999 = missing data A word document details the sampling protocols for viscosity and in vivo fluorescence. Note: ASAC project 2382 operates in direct collaboration with ASAC project 2596 (Three-dimensional microscale distribution and production of plankton populations).

  • The CTD data were acquired when the RMT instrument was in the water. Data Acquisition: There is a FSI CTD sensor housed in a fibreglass box that is attached to the top bar of the RMT. The RMT software running in the aft control room establishes a Telnet connection to the aft control terminal server which connects to the CTD sensor using various hardware connections. Included are the calibration data for the CTD sensor that were used for the duration of the voyage. The RMT software receives packet of CTD data and every second the most recent CTD data are written out to a data file. Additional information about the motor is also logged with the CTD data. Data are only written to the data file when the net is in the water. The net in and out of water status is determined by the conductivity value. The net is deemed to be in the water when the conductivity averaged over a 10 second period is greater than 0. When the average value is less than 0 the net is deemed to be out of the water. New data files were automatically created for each trawl. Data Processing: 1. Adjustment of the net open time. If the net did not open when first attempted then the net was 'jerked' open. This meant the winch operator adjusted the winch control so that it was at maximum speed and then turned it on for a very short time. This had the effect of dropping the net a short distance very quickly. This dislodges the net hook from its cradle and the net opens. The scientist responsible for the trawl would have noted the time in the trawl log book that the winch operator turned on the winch to jerk the net. The data files will have started the 'net open' counter 10 seconds after the user clicks the 'Net Open' button. If this time did not match the time written in the trawl log book by the scientist, then the net open time in the CSV file was adjusted. The value in the 'Net Open Time' column will increment from the time the net started to open to the time that the net started to close. The pressure was also plotted to ensure that the time written down in the log book was correct. When the net opens there is a visible change in the CTD pressure value received. The net 'flies' up as the drag in the water increases as the net opens. If the time noted was incorrect then the scientist responsible for the log book, So Kawaguchi, was notifed of the problem and the data file was not adjusted. 2. Removing unused columns from the original log files. The original log files that were produced by the RMT software were trimmed to remove any columns that did not pertain to the CTD data. These columns include the motor information and the ITI data. The ITI data gives information about the distance from the net to the ship but was not working for the duration of the BROKE-West voyage. This trimming was completed using a purpose built java application. This java class is part of the NOODLES source code. Dataset Format: The dataset is in a zip format. There is a .CSV file for each trawl, 125 in total. There were 51 Routine trawls and 74 Target Trawls. The file naming convention is as follows: [Routine/Target]NNN-rmt-2006-MM-DD.csv Where, NNN is the trawl number from 001 to 124. MM is the month, 01 or 02 DD is the day of the month. Also included in the zip file are the calibration files for each of the CTD sensors and the current documentation on the RMT software. Each CSV file contains the following columns: Date (UTC) Time (UTC) Ship Latitude (decimal degrees) Ship Longitude (decimal degrees) Conductivity (mS/cm) Temperature (Deg C) Pressure (DBar) Salinity (PSU) Sound Velocity (m/s) Fluorometer (ug/L chlA) Net Open Time (mm:ss) If the net is not open this value will be 0, else the number of minutes and seconds since the net opened will be displayed. When the user clicks the 'Net Open' button there is a delay of 10 seconds before the net starts to open. The value displayed in the 'Net Open Time' column starts incrementing once this 10 seconds delay has passed. Similarly when the user clicks the 'Net Close' button there is a delay of 6 seconds before the net starts to close. Thus the counter stops once this 6 seconds has passed. Acronyms Used: CTD: Conductivity, Temperature, Pressure RMT: Rectangular Midwater Trawl CSV: Comma seperated value FSI: Falmouth Scientific Inc ITI: Intelligent Trawl Interface This work was completed as part of ASAC projects 2655 and 2679 (ASAC_2655, ASAC_2679).

  • This dataset contains locations of sampling sites for ASAC project 40 on voyage 3 of the Aurora Australis in the 2004/2005 season. Samples were collected between December and February of 2004/2005. It also contains information on chlorophyll, carotenoids, coccolithophorids and species identification and counts. Public Summary from the project: This program aims to determine the role of single celled plants, animals, bacteria and viruses in Antarctic waters. We quantify their vital role as food for other organisms, their potential influence in moderating global climate change through absorption of CO2 and production of DMS, and determine their response to effect of climate change. For more information, see the other metadata records related to ASAC project 40 (ASAC_40). There are three spreadsheets in this download file - one for the CLIVAR I9 transect, and another for a survey in the region of the Princess Elizabeth Trough. A third spreadsheet contains pigment data. Each spreadsheet contains several worksheets. PET - CTD Station details, CTD profiles, CTD Surface Samples. I9 - CTD Station details, CTD profiles, CTD Surface Samples, Transect Surface Samples. CLIVAR_CTD_Pigs_CHEMTAX - Pigment data: Concentrations of various pigments (ug/L) analysed by HPLC (see protocol); Interpretation: Interpretation of pigment data using CHEMTAX to estimate the amount (ug/L) of chlorophyll a present in a range of algal types. There is also a word document detailing some of the HPLC procedures used. The fields in this dataset are: Station Latitude Longitude Time (Universal Time) Sounder depth Sounder offset Bottles Depths (dB) Label Fmax Tmin HPLC Fluorescence FCM Visc/TEP Phyto ID Lugols Glut Bacteria Water Temperature Salinity Conductivity Net Sample Depth (m) Species Chlorophyll a Pigments HPLC

  • Environmental manipulation and competition experiments on cultured and natural diatoms will identify the response of key taxa to environment modification. Understanding the environmental factors governing diatom distribution and natural variability will provide a basis to interpret palaeo-environment records, and allow predictions how this temperature-sensitive ecosystem will respond to future change. Environmental manipulation and competition experiments using diatoms will identify the response of key taxa to environment modification. Understanding the environmental factors governing their distribution and natural variability will provide a basis to interpret palaeo-environment records, and allow predictions how this temperature-sensitive ecosystem will respond to future change. Diatoms for the experiments were collected in 2002 (Aurora Australia, Voyage 1) and 2003 (Aurora Australis, Voyage 1). On each occasion water from the ship's online seawater tap was filtered through a 20 micrometre plankton net for up to one hour into a sample jar. A portion of the sample was preserved in lugol's iodine for later phytoplankton analysis, and the rest of the sample maintained alive in the dark in seawater at a constant low temperature. The live sample is maintained at the AAD for culturing and environment manipulation and competition experiments. Project 2364 Twelve water samples were collected from 23/10/03 to 27/10/03, in open seawater between 60 degrees 45' S and 50 degrees 02' S. At each site, the following data were recorded from the ship's data logger: latitude, longitude, UTC time, local time, water depth, salinity, water temperature, fluorescence, UVB, and conductivity.

  • Oceanographic data were collected on Aurora Australis Voyage 4 2003/2004, from December 2003 to February 2004, and a calibrated data set was created. The oceanographic program on the voyage was a part of the cruise-determining fish survey in the vicinity of Heard Island. A total of 42 CTD vertical profile stations were taken, most to within 5 m of the bottom. Over 450 Niskin bottle samples were collected and analysed on board, for calibration of the CTD conductivity sensors. Nutrient samples were also collected, but not analysed. Near surface current data were collected using a ship mounted ADCP. Data from the array of ship's underway sensors are included in the data set. The data report describes the processing/calibration of the CTD and ADCP data, and gives important details concerning data quality. An offset correction was derived for the underway sea surface temperature and salinity data, by comparison with near surface CTD data. These data form part of the overall dataset for ASAC project 2388 (ASAC_2388).

  • Oceanographic measurements were conducted on a cruise of the Aurora Australis to the Southern Ocean in April and May of 1998. A total of 97 CTD vertical profiles were taken. Niskin bottle water samples were collected for the measurement of salinity, dissolved oxygen, nutrients (phosphate, nitrate+nitrite, silicate), dissolved inorganic carbon, alkalinity, carbon isotopes, dissolved organic carbon, N2O isotopes, pH, oxygen-18, barium, nitrogen-15, arsenic, ammonia, DMS/P, bacteria, silicon-32, particulate silicon, productivity, ETS, pigments, species counts, cytometry, particulate organic carbon and nitrogen, urea, copper and iron, using a 24 bottle rosette sampler. These data have been recovered by the AADC - as such this is a generic metadata record. The fields in this dataset are: oceanography ship station number date start time bottom time finish time cruise start position bottom position finish position maximum position bottom depth pressure temperature (T-90) salinity sigma-T specific volume anomaly geopotential anomaly dissolved oxygen fluorescence photosynthetically active radiation

  • Oceanographic measurements were conducted in the Subantarctic Zone south of Tasmania in September 1997. 5 sediment trap moorings were deployed, and a total of 10 CTD vertical profiles were taken. Over 90 Niskin bottle water samples were collected for the measurement of salinity and nutrients (phosphate, nitrate+nitrite, silicate). The fields in this dataset are: oceanography ship station number date start time bottom time finish time cruise start position bottom position finish position maximum position bottom depth pressure temperature (T-90) salinity sigma-T specific volume anomaly geopotential anomaly dissolved oxygen fluorescence photosynthetically active radiation

  • This dataset contains results from Continuous Plankton Recorder (CPR) surveys in the Southern Ocean. When the opportunity arises, zooplankton species, numbers and abundance data are recorded on a continuous basis as vessels steam through the area between Australia and Antarctica, including Heard and Macquarie Islands. Observations have been made since June 1990 and are ongoing. Obviously the observations are not continuous over the region with time. Many of the original SO-CPR logbooks from the various voyages have also been scanned, and are available via the Australian Antarctic Data Centre's Reports Register. Zooplankton have been identified to lowest possible taxon, usually species, and counted for each segment. For copepods, copepodites and for some species nauplii (e.g. Rhincalanus gigas) have been counted separately, and for euphausiids, naupliar, calyptopis and furcilia developmental stages are identified. The fields in this dataset are: Tow_number - the CPR tow number Ship_name - the name of the ship on which the tow was conducted Season - two-year Antarctic season based around the austral summer, e.g. '2000-01' runs from July 2000 to June 2001 Latitude - the decimal latitude of the segment sample Longitude - the decimal longitude of the segment sample Observation_date - UTC date and time of the segment sample in ISO8601 format (yyyy-mm-ddTHH:MMZ) Observation_date_year - the observation date year Observation_date_month - the observation date month Observation_date_day - the observation date day Observation_date_hour - the observation date hour Observation_date_minute - the observation date minute Observation_date_time_zone - the observation date time zone (0=UTC) Segment_number - the individual segment number within each tow Segment_length - the distance travelled by the CPR during this segment (nautical miles). This is the true segment length as used in the Geocoding program used to cut the silk, and to calculate positions and average environmental data for each segment. In theory, all segments are 5 nautical miles long. However, this wasn't always the case with early Aurora Australis tows, where it was assumed that each marked segment was 5 nautical miles whereas each tow had subtle variations in silk advancement, depending on the wear of the cassette or travel with or against a current. True segment length has since been recalculated. At other times, some silks have been incorrectly cut and the true length has again been recalculated. The last segment of each tow may be less than 5 nautical miles. This field can be used to standardise species counts to say 5 nautical miles or to a theoretical volume filtered by multiplying the distance travelled by aperture area (12.7 x 12.7 mm): Volume Filtered = Distance (n miles) x 1852 metres x 0.0127^2. A 5 nautical mile segment theoretically represents 1.49 m^3. Total_abundance - total count of all zooplankton in a segment Phytoplankton_colour_index - visual estimation of the green colour of the silk mesh. Values are 'No Colour', 'Very Pale Green', 'Pale Green', or 'Green'. This colouration is due to the green chlorophyll pigments derived from chloroplasts of intact and broken cells and small unarmoured flagellates. It may provide an indicator of phytoplankton standing stock, although in the Southern Ocean there are some diatoms that are quite common on the silks but as they have very low amounts of chlorophyll the colour doesn't register in the PCI analysis. Fluorescence - water fluoresence measured by the vessel, averaged for the segment (arbitrary units). See Quality notes for more information. Salinity - water salinity measured by the vessel, averaged for the segment (psu). See Quality notes for more information. Water_temperature - water temperature measured by the vessel (degrees Celsius). See Quality notes for more information. Photosynthetically_active_radiation - photosynthetically active radiation measured by the vessel (micro-Einsteins m-2 s-1). This is not available on some vessels but has been included as a useful parameter to help differentiate data from night and day. The remaining fields ('Abylidae' through to 'Vibilia_sp') are zooplankton taxon names. The entries in these columns are the counts of each taxon in the segment.

  • Oceanographic measurements were conducted along a series of meridional and zonal sections along the Antarctic continental shelf and slope region between 80 and 150 deg.E, from January to March 1996 during the BROKE cruise of the Aurora Australis. A total of 147 CTD vertical profile stations were taken, most to near bottom. Over 2450 Niskin bottle water samples were collected for the measurement of salinity, dissolved oxygen, nutrients (phosphate, nitrate+nitrite, silicate), chlorofluorocarbons, oxygen 18, primary productivity, and biological parameters, using a 24 bottle rosette sampler. Near surface current data were collected using a ship mounted ADCP. Measurement and data processing techniques are summarised, and a summary of the data are presented in graphical and tabular form. The fields in this dataset are: oceanography ship station number date start time bottom time finish time cruise start position bottom position finish position maximum position bottom depth pressure temperature (T-90) salinity sigma-T specific volume anomaly geopotential anomaly dissolved oxygen fluorescence photosynthetically active radiation

  • Microsoft Access database containing a compilation of CTD data collected in the Southern Ocean from Australian Antarctic Division (AAD), Antarctic Climate and Ecosystems Co-operative Research Centre (ACE CRC) and Hydrographic Atlas of the Southern Ocean (SOA) data sources. This SOA data contains discrete CTD (Conductivity, Temperature and Depth) station data along with a 1 x 1 degree gridded CTD data set interpolated in space and time. Parameters include pressure, temperature, salinity, dissolved oxygen, nutrients (phosphate, nitrate+nitrite, and silicate). Ocean Tools software developed by AAD is available in conjunction with this database to manipulate, extract and visualise data (including station map, transect selection, xy plots, vertical cross sections, geostrophic velocity/transport calculations). The download file contains an access database of the compiled CTD data, a word document containing further information about the structure of the database and the data (AAD CTD Data.doc), and a folder of the original source data, including readmes providing reference details, and specific information.