Keyword

EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > WATER QUALITY/WATER CHEMISTRY > CONTAMINANTS > TRACE METALS

3 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 3 / 3
  • These data describe the field deployments of the trace-metal passive sampling tools, diffusive gradients in thin-films (DGT). Deployments occurred over the summer 2017/2018 season in the coastal region adjacent to Casey and Wilkes stations. Deployments of DGT to the nearshore marine environment was achieved with small watercraft and shallow (less than 5m deep) moorings, which were left in situ for 21-37 days, depending on the site.

  • This study assessed the performance of diffusive gradients in thin-films (DGT) with a binding resin that used Chelex-100 (iminodiacetic acid functional groups) to measure cadmium, copper, nickel, lead, and zinc contaminants in Antarctic marine conditions. To do this, three sets of experiments were done: (I) the uptake of metals to DGT samplers was assessed over time when deployed to three metal mixtures of known concentrations (DGT performance page). This allowed for the determination of metal diffusion coefficients in Antarctic marine conditions and demonstrated when metal competition for binding sites were likely to occur. (II) the DGT were deployed in the presence of the microalga Phaeocystis antarctica at a concentration of 1000-3000 cells/mL to investigate how environmentally realistic concentrations of an Antarctic marine microalgae affect the uptake of metals (DGT uptake with algae page). Finally, the DGT-labile concentrations from part (II) were used in reference toxicity mixture models to predict toxicity to the microalgae so they could be compared to a previous study that investigated the toxicity of metal mixtures to Phaeocystis antarctica and Cryothecomonas armigera (DGT toxicity modelling page).

  • Exopolysaccharide (EPS) is complex sugar made by many microbes in the Antarctic marine environment. This project seeks to understand the ecological role of microbial EPS in the Southern Ocean, where it is known to strongly influence primary production. We will investigate the chemical composition and structure of EPS obtained from Antarctic microbes, which will improve our knowledge of its ecological significance and biotechnological potential. Dataset includes the following: 1) Information on Exopolysaccharide-producing bacterial isolates, isolation sites, media used and growth conditions. 2) 16S rRNA gene sequence and fatty acid data of isolates for strain identification. 3) Exopolysaccharide chemistry data including EPS carbohydrate composition, organic acid composition, sulfate content, molecular weight. 4) Physiology of exopolysaccharide synthesis. Effects of temperature and other factors on EPS yield and glucose conversion efficiency. 5) Iron binding properties. The download file includes: 11 files File 1. Bacterial isolate 16S rRNA gene sequences obtained from Southern Ocean seawater or ice samples. The sequences are all deposited on the GenBank nucleotide (NCBI) database. Sequences are in FASTA format. File 2. Seawater and sea-ice sample information including sites samples, sample type. File 3. Data for exopolysaccharide (EPS)-producing bacteria isolated and subsequently selected for further studied. Information indicates special treatments used to obtain strains including plankton towing, filtration method, and enrichment. Identification to species level was determined by 16S rRNA gene sequence analysis. File 4. EPS-producing bacterial isolate fatty acid content determined using GC/MS procedures. File 5. Basic chemical data for EPS from Antarctic isolates including protein, sulfate, and sugar type relative content (determined by chemical procedures), molecular weight in kilodaltons and polydispersity (determined by gel-based molecular seiving). File 6 Monosaccharide unit composition determined by GC/MS of EPS from Antarctic isolates. File 7. Effect of temperature on culture viscosity and growth of EPS-producing bacterium Pseudoalteromonas sp. CAM025 as affected by temperature. File 8. Effect of temperature on EPS and cell yields and EPS synthesis efficiency (as indicated by glucose consumption) of EPS-producing bacterium Pseudoalteromonas sp. CAM025 as affected by temperature. File 9. Efficiency of copper and cadmium metal ion adsorption onto EPS from EPS-producing bacterium Pseudoalteromonas sp. CAM025. File 10. Phenotypic characteristics data for novel EPS-producing Antarctic strain CAM030. Represents type strain of Olleya marilimosa. File 11. Effect of temperature on chemical make up of EPS from EPS-producing bacterium Pseudoalteromonas sp. CAM025.