EARTH SCIENCE > OCEANS > SEA ICE > SNOW MELT
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
Observations of the sea ice near Mawson were carried out in 1980, concentrating on the thickness of the ice at several points, and the accumulation and ablation of snow/ice cover on the ice. The ablation measurements were carried out by laying 23 ablation stakes out in two fields - a set of eight stakes in a straight line, and a set of 15 in a triangle. Results from both sets of observations were recorded in a log book, currently archived at the Australian Antarctic Division.
-
Four ice monitoring stations were set up at Davis in 1993 (a fifth station was added after the first two months), with regular recordings of ice depth, snow cover and ablation made for each station by taking a sea ice core. Observations of the general condition of the drilled cores were also recorded. Observations were made at irregular intervals (roughly every 1-2 weeks). The observations for each individual day are listed, along with a summary table. These records are stored as handwritten files, and are archived at the Australian Antarctic Division.
-
Metadata record for data from ASAC Project 1060 See the link below for public details on this project. Taken from the referenced publications: Sea ice exhibits a marked transition in its fluid transport properties at a critical brine volume fraction Pc of about 5 percent, or temperature Tc of about -5 degrees Celsius for salinity of 5 parts per thousand. For temperatures warmer than Tc brine carrying heat and nutrients can move through the ice, whereas for colder temperatures the ice is impermeable. This transition plays a key role in the geophysics, biology, and remote sensing of sea ice. Percolation theory can be used to understand this critical behaviour or transport in sea ice. The similarity of sea ice microstructure to compressed powders is used to theoretically predict Pc of about 5 percent. The snow cover on Antarctic sea ice often depresses the ice below sea level, allowing brine or seawater to infiltrate, or flood the snowpack. This significantly reduces the thermal insulation properties of the snow cover, and increases the ocean/atmosphere heat flux. The subsequent refreezing of this saturated snow or slush layer, to form snow-ice, can account for a significant percentage of the total ice mass in some regions. The extent of saturated snow cannot presently be estimated from satellite remote-sensing data and, because it is often hidden by a layer of dry snow, cannot be estimated from visual observations. Here, we use non-parametric statistics to combine sea-ice and snow thickness data from drillhole measurements with routine visual observations of snow and ice characteristics to estimate the extent of brine-infiltrated snow. During a field experiment in July 1994, while the R.V. Nathaniel B. Palmer was moored to a drifting ice floe in the Weddell Sea, Antarctica, data were collected on the sea-ice and snow characteristics. We report on the evolution of ice which grew in a newly opened lead. As expected with the cold atmospheric conditions, congelation ice initially formed in the lead. Subsequent snow accumulation and large ocean heat fluxes resulted in melt at the base of the ice, and enhanced flooding of the snow on ice surface. This flooded snow subsequently froze, and, five days after the lead opened, all the congelation ice had melted and twenty-six centimetres of snow ice had formed. We use measured sea-ice and snow salinities, thickness and oxygen isotope values of the newly formed lead ice to calculate the salt flux to the ocean. Although there was a salt flux to the ocean as the ice initially grew, we calculate a small net fresh-water input to the upper ocean by the end of the 5 day period. Similar processes of basal melt and surface snow-ice formation also occurred on the surrounding, thicker sea ice. Oceanographic studies in this region of the Weddell Sea have shown that salt rejection by sea-ice formation may enhance the ocean vertical thermohaline circulation and release heat from the deeper ocean to melt the ice cover. This type of deep convection is thought to initiate the Weddell polynya, which was observed only during the 1970s. Our results, which show than an ice cover can form with no salt input to the ocean, provide a mechanism which may help explain the more recent absence of the Weddell polynya.
-
More than 50 scientists from eight countries conducted the Sea Ice Physics and Ecosystem eXperiment 2012 (SIPEX-2). The 2012 voyage built on information and observations collected in 2007, by re-visiting the study area at about 100-120 degrees East. This was the culmination of years of preparation for the Australian Antarctic Division and, more specifically, the ACE CRC sea-ice group who lead this international, multi-disciplinary, sea ice voyage to East Antarctica. Work began at the sea-ice edge and penetrated the pack ice towards the coastal land-fast ice. The purpose of SIPEX-2 was to investigate relationships between the physical sea-ice environment, marine biogeochemistry and the structure of Southern Ocean ecosystems. While the scientists and crew did not set foot on Antarctic terra firma, a number of multi-day research stations were set up on suitable sea ice floes, and a range of novel and state-of-the-art instruments were used. These included: A Remotely Operated Vehicle (ROV) to observe and film (with an on-board video camera) krill, and to quantify the distribution and amount of sea ice algae associated with ice floes. An Autonomous Underwater Vehicle (AUV) to study the three-dimensional under-ice topography of ice floes. Helicopter-borne instruments to measure snow and ice thickness, floe size and sea ice type. Instruments included a scanning laser altimeter, infrared radiometer, microwave radiometer, camera and GPS. Sea ice accelerometer buoys to measure sea ice wave interaction and its effect on floe-size distribution. Customised pumping systems and light-traps to catch krill from below the ice and on the sea floor. Available at the provided URL in this record, is a link to a file containing the locations of all ice stations from this voyage.