EARTH SCIENCE > OCEANS > SEA ICE > ICEBERGS
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
A collection of at sea observations made of icebergs, seabirds and whales on the BROKE voyage of the Aurora Australis during the 1995-1996 summer season. The data are mostly text or csv files and document observations of icebergs, seabirds and whales, giving times and/or locations. Further supporting information may be included in the data download, or in other metadata records relating to the BROKE voyage (as opposed to the later BROKE-West voyage).
-
In 1985, the Nella Dan was trapped in sea ice for several weeks while undertaking a marine science voyage. During the time it was trapped, iceberg drift was measured in the region, tracking the movement of several icebergs relative to the ship. Iceberg movements included mt biscoe angle, bearing, and ship position so can get rotations with redundancy. Observations were done several times a day. The physical logs are archived at the Australian Antarctic Division.
-
Handdrawn maps plotting the ships position over time, with notes recording the sea ice and icebergs observed for each plotted point. Also includes sketches of the ice edge and some fast ice positions for the area around where the ship was travelling. The maps are archived at the Australian Antarctic Division.
-
Between 1954 and 1975, iceberg observations were collected on Australian National Antarctic Research Expeditions (ANARE) by Antarctic expeditioners on a volunteer basis as they travelled to and from Antarctica. No fixed format for data collection had been determined, and many of the observations recorded are in diary format. The data have not been converted to electronic form, and are available only in the original logbooks held at the National Archives Office.
-
Ice-rafted debris is characterised by coarse material with typically angular grains, transported within icebergs and deposted in the ocean as the icebergs melt. This iceberg rafted debris (IBRD) flux data submitted here, was calculated by quantifying the coarse sand fraction (CSF) as a percentage of the bulk sample (weight of grains in the 250 micron to 2 mm size fraction), the dry bulk density (DBD) and the linear sedimentation rate (LSR) (following Krissek et al., 1995, Patterson et al., 2014). A method for quantifying the IBRD flux uses the coarse sand fraction (CSF) as a percentage of the bulk sample, dry bulk density (DBD) and the linear sedimentation rate (LSR) (Krissek et al., 1995, Patterson et al., 2014): The CSF (250μm-2mm) was acquired from samples at 10cm intervals along KC14 by wet-sieving approximately 20g of sediment per sample. Authigenic grains and microfossils were removed from the samples under a microscope. The remaining material was weighed on a microbalance and calculated as a percentage of the bulk sample. The DBD was calculated by subsampling approximately 8cm3 of sediment from the same depth intervals and dividing the dry weight of the sediment by the volume of the subsampler. The LSR was approximated by dividing the distance (cm) between the calibrated bulk carbon ages by the difference in time (kyr). The IBRD flux was then quantified using the above equation for each depth interval.
-
More than 50 scientists from eight countries conducted the Sea Ice Physics and Ecosystem eXperiment 2012 (SIPEX-2). The 2012 voyage built on information and observations collected in 2007, by re-visiting the study area at about 100-120 degrees East. This was the culmination of years of preparation for the Australian Antarctic Division and, more specifically, the ACE CRC sea-ice group who lead this international, multi-disciplinary, sea ice voyage to East Antarctica. Work began at the sea-ice edge and penetrated the pack ice towards the coastal land-fast ice. The purpose of SIPEX-2 was to investigate relationships between the physical sea-ice environment, marine biogeochemistry and the structure of Southern Ocean ecosystems. While the scientists and crew did not set foot on Antarctic terra firma, a number of multi-day research stations were set up on suitable sea ice floes, and a range of novel and state-of-the-art instruments were used. These included: A Remotely Operated Vehicle (ROV) to observe and film (with an on-board video camera) krill, and to quantify the distribution and amount of sea ice algae associated with ice floes. An Autonomous Underwater Vehicle (AUV) to study the three-dimensional under-ice topography of ice floes. Helicopter-borne instruments to measure snow and ice thickness, floe size and sea ice type. Instruments included a scanning laser altimeter, infrared radiometer, microwave radiometer, camera and GPS. Sea ice accelerometer buoys to measure sea ice wave interaction and its effect on floe-size distribution. Customised pumping systems and light-traps to catch krill from below the ice and on the sea floor. Available at the provided URL in this record, is a link to a file containing the locations of all ice stations from this voyage.