EARTH SCIENCE > OCEANS > OCEAN CIRCULATION
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
Metadata record for data from ASAC Project 2960 See the link below for public details on this project Public The ocean's thermohaline circulation (THC) plays a fundamental role in global climate, transporting heat poleward and regulating the uptake of anthropogenic CO2. Multiple steady-states in the THC have been identified in the North Atlantic, including an "off" state where no deep water is formed, yet little is known regarding the possibility for multiple equilibria of the Southern Ocean THC. This study aims to (1) examine hysteresis behaviour and possible multiple equilibria of the Southern Ocean THC, and (2) quantify the role of the Southern Ocean THC by examining the difference between "on" and "off" states in various water-masses. Project objectives: The overarching goal of the proposed study is to explore the possibility of multiple steady-states of the Southern Ocean (SO) thermohaline circulation (THC) and to explore their role in the global climate system. Multiple steady-states in the ocean's THC have been identified in the Northern Hemisphere [e.g., Marotzke, 2000; Rahmstorf, 2002]. While substantial climate variability and change can be inferred from palaeoclimate data for the Southern Hemisphere, our understanding of the underlying physics of SO THC variability and the associated climate dynamics remains limited. It is also unclear how the Southern Ocean THC will change in the future. This study aims to: 1. Examine the hysteresis behaviour of the Southern Ocean thermohaline circulation in relation to surface freshwater forcing, both for AABW and AAIW, 2. Explore the possibility for multiple steady-states in the Southern Ocean THC, 3. Estimate how the present-day Southern Ocean THC may be changing in relation to this hysteresis diagram, and how this relates to global climate, and 4. Quantify the role of the present-day Southern Ocean THC by examining the difference between "on" and "off" states. Taken from the 2008-2009 Progress Report: Progress against objectives: Progress on this Antarctic Sciences project during 2008/2009 can be summarised as below. Each of the four main aims have been touched upon during the past 12 months, although the most significant progress has been against items 1, 3, and 4 as listed in Section 1.1 above. The existence of teleconnections of Southern Ocean freshwater anomalies to the North Atlantic THC was investigated, primarily in the context of past climates (Trevena, Sijp and England, 2008a). We found that a Southern Ocean freshwater pulse of comparable magnitude to meltwater pulse 1A, shuts down, instead of strengthens, NADW in a glacial climate simulation. Unlike a modern-day simulation, the glacial experiment is associated with a more fragile North Atlantic thermohaline circulation, whereby freshwater anomalies that propagate into the North Atlantic are able to dominate the bipolar density see-saw. The possibility for large-scale collapse and/or multiple steady-states in the Southern Ocean THC was also investigated using a coupled climate model of intermediate complexity. Also investigated was the impact of a slowdown of Antarctic Bottom Water (AABW) on regional Southern Hemisphere climate. This involved the gradual addition of meltwater anomalies to strategic locations of the Southern Ocean, then removal of these anomalies to explore whether the regional thermohaline circulation (THC) exhibits saddle-node instabilities (bifurcation points) as have been commonly found for the North Atlantic. We found that no stable AABW "off" state could persist, regardless of the freshwater anomaly imposed. We did, however, identify a significant impact on regional climate during the transient slow down of AABW (Trevena, Sijp and England, 2008b). In particular, during peak FW forcing, Antarctic surface sea and air temperatures decrease by a maximum of 2.5 degs C and 2.2 degs-C respectively. This is of a similar magnitude to the corresponding response in the North Atlantic. Taken from the 2009-2010 Progress Report: Progress against objectives: Progress on this Antarctic Sciences project during 2009/2010 can be summarised as below. Each of the four main aims have been touched upon during the past 12 months, although the most significant progress has been against items 2 and 4 as listed in Section 1.1 above. A large set of experiments were configured and analysed to examine Southern Ocean THC states in the global climate system. Specifically we conducted experiments using the Canadian University of Victoria Earth System Climate Model (the 'UVic' model) wherein the model is perturbed in some way to explore the possibility for multiple steady-states in the Southern Ocean THC. Where multiple steady states were obtained, the difference between "on" and "off" states was examined to quantify the role of the Southern Ocean THC in global climate. Three papers were published in the 2009/2010 period that were produced using support from this Antarctic Research project:- Sijp, W. P., M. H. England, and J.R. Toggweiler, 2009: Effect of ocean gateway changes under greenhouse warmth, J. Climate, 22, 6639-6652. In this study Southern Ocean gateway changes and the THC were examined under a suite of atmospheric CO2 levels, spanning pre-industrial (280 ppm) up to values relevant to the Eocene (1500 ppm). A markedly stronger gateway response is found under elevated CO2 levels, suggesting past work has underestimated the effects of gateway changes at the Oligocene-Eocene boundary. Sen Gupta, A., A. Santoso, A.S. Taschetto, C.C. Ummenhofer, J. Trevena and M.H. England, 2009: Projected changes to the Southern Hemisphere ocean and sea-ice in the IPCC AR4 climate models, J. Climate, 22, 3047-3078. In this study simulations of the Southern Ocean THC, water-masses, and mixed layer depth were examined and compared across a series of IPCC-class global climate models, under both present-day and climate change scenarios. Sijp, W. P. and M. H. England, 2009: The control of polar haloclines by along-isopycnal diffusion in climate models, J. Climate, 22, 486-498. In this study the ocean THC was shown to be sensitive to along-isopycnal diffusion rates in global climate models. This potentially impacts on past studies wherein multiple equilibria were obtained at unrealistic values of this mixing parameter.
-
Metadata record for data expected ASAC Project 1207 See the link below for public details on this project. ---- Public Summary from Project ---- Project title: 'Effects of variability in ocean surface forcing on the properties of SAMW and AAIW in the South Indian Ocean' This project will study the formation and subduction processes and the properties of Antarctic Intermediate Water and Sub-Antarctic Mode Water as simulated by an Ocean General Circulation model, with particular reference to the South Indian Ocean. The study will attempt to determine how its formation and properties are affected by interannual variations in SST and wind forcing and by differing prescriptions of mixing and convection processes occurring in mid-to high latitude oceanic frontal regions of the Southern Ocean. The investigation of the ocean response in the Indian Ocean will profit from the use of a model employing general orthogonal coordinates and efficient variable resolution grids which are global but concentrated in the Indian sector. From the abstracts of the referenced papers: This article considers how some of the measures used to overcome numerical problems near the North Pole affect the ocean solution and computational time step limits. The distortion of the flow and tracer contours produced by a polar island is obviated by implementing a prognostic calculation for a composite polar grid cell, as has been done at NCAR. The severe limitation on time steps caused by small zonal grid spacing near the pole is usually overcome by Fourier filtering, sometimes supplemented by the downward tapering of mixing coefficients as the pole is approached; however, filtering can be expensive, and both measures adversely affect the solution. Fourier filtering produces noise, which manifests itself in such effects as spurious static instabilities and vertical motions; this noise can be due to the separate and different filtering of internal and external momentum modes and tracers, differences in the truncation at different latitudes, and differences in the lengths of filtering rows, horizontally and vertically. Tapering has the effect of concentrating tracer gradients and velocities near the pole, resulting in some deformation of fields. In equilibrium ocean models, these effects are static and localised in the polar region, but with time-varying forcings or coupling to atmosphere and sea ice it is possible that they may seriously affect the global solution. The marginal stability curve in momentum and tracer time-step space should have asymptotes defined by diffusive, viscous, and internal gravity wave stability criteria; at large tracer time steps, tracer advection stability may become limiting. Tests with various time-step combinations and a flat-bottomed Arctic Ocean have confirmed the applicability of these limits and the predicted effects of filtering and tapering on them. They have also shown that the need for tapering is obviated by substituting a truncation which maintains a constant time step limit rather than a constant minimum wave number over the filtering range. Continuous and finite difference forms of the governing equations are derived for a version of the Bryan-Cox-Semtner ocean general circulation model which has been recast in orthogonal, transversely curvilinear coordinates. The coding closely follows the style of the Geophysical Fluid Dynamics Laboratory modular ocean model No. 1. Curvilinear forms are given for the tracer, internal momentum, and stream function calculations, with the options of horizontal and isopycnal diffusion, eddy-induced transport, nonlinear viscosity, and semiimplicit treatment of the Coriolis force. The model is designed to operate on a rectangular three-dimensional array of points and can accomodate reentrant boundary conditions at both 'northern' and 'east-west' boundaries. Horizontal grid locations are taken as input and need to be supplied by a separate grid generation program. The advantages of using a better behaved and more economical grid in the north polar region are investigated by comparing simulations performed on two curvilinear grids with one performed on a latitude-longitude grid and by comparing filtered and unfiltered latitude-longitude simulations. Resolution of horizontally separated currents in Fram Strait emerges as a key challenge for representing exchanges with the Arctic in global models. It is shown that a global curvilinear grid with variable resolution is an efficient way of providing a high density of grid points in a particular region. In equilibrium experiments using asynchronous time steps, this type of grid has been found to allow a better representation of smaller-scale features in the high-resolution region while maintaining contact with the rest of the World Ocean, provided that lateral mixing coefficients be scaled with grid size so as to maintain marginal numerical stability. In this study, the region of interest is the southern Indian Ocean and, in particular, that of the South Indian Ocean Current. In all experiments, decreased viscosities and diffusivities were found to control tracer gradients on isopycnals but not isopycnal slopes, while thickness diffusivities controlled isopycnal slopes but only to a small degree tracer gradients. Changes to mixing coefficients in the coarse part of the grid had hardly any influence on the frontal properties examined, although they did affect currents in the Indian Ocean to some extent via their control on size of the Antarctic Circumpolar Current and the Pacific-Indian Throughflow.
-
Metadata record for data from ASAC Project 2794 See the link below for public details on this project. Public: This study will use innovative technology to measure the winter spatial foraging patterns and net energy gain of adult female elephant seals (and potentially Weddell seals), while simultaneously providing high-resolution data on the physical nature of the water column in which the seals live. By combining biological and physical data with satellite derived sea-ice information, this study will improve our understanding of predator foraging success (and therefore mechanisms which regulate population trajectories) and provide physical oceanographers with fundamental data on the importance mechanisms that determine the winter ice and bottom water formation that under-pin the Antarctic marine ecosystem. Project objectives: The extent and nature of Antarctic winter sea ice is thought to have profound impacts on biological productivity, the recruitment of Antarctic krill, and the flow-on effects through the Antarctic marine food web. 1. Winter sea-ice formation is also hypothesised to play an important, yet highly-variable role in ocean circulation patterns through the production of cold, dense winter bottom water. 2. The mechanisms determining the inter-annual variation in winter ice formation are poorly understood, as are the complex feedback processes involved, but they are nonetheless recognised as being vulnerable to human-induced climate change. 3. Given the dynamically-linked nature of winter-ice and biological productivity, long-term climatic changes will have broad scale influences on Antarctic biota. This study will use innovative technological developments to quantify the response of one of the major Antarctic marine predators, the southern elephant seal (Mirounga leonina), to inter-annual variation in winter ice conditions. We will measure the winter spatial foraging patterns and net energy gain of adult female elephant seals while simultaneously providing high-resolution data on the physical nature of the water column in which the seals are living. The combination of these biological and physical data with satellite-derived sea-ice information will relate variation in the winter-ice to broad scale biological production through the foraging success (maternal investment and therefore demographic performance) of a top Antarctic marine predator, as well as providing physical oceanographers with fundamental data on the important mechanisms that determine the winter ice and bottom water formation that under-pin the Antarctic marine ecosystem. The specific objectives are to: 1. Measure the foraging performance of the seals in terms of spatially-specific net energy gain while at sea, in relation to intra- and inter-annual variation in sea-ice and oceanic processes. 2. Use newly-developed (and tested) animal-borne satellite-linked Conductivity-Temperature-Depth Satellite Relay Data Loggers (CTD-SRDLs) to provide oceanographic quality data on local physical characteristics (temperature and salinity). 3. Record fine-scale foraging parameters (dive depth, duration, swimming speed) using "Dead-Reckoning" Data Loggers (DRDLs) and feeding events using Stomach Temperature Sensors (STSs). 4. Integrate these data collected in years and regions of different winter ice extent and conditions. 5. Assess diet during the winter months using stable isotope and fatty acid signature analysis. 6. Combine the biological and physical information to refine current models of predator performance based on annual climatic features. These models will be used to examine a range of climate-change scenarios, initially for elephant seals but with a view to broadening the species application at a later stage. Taken from the 2008-2009 Progress Report: Progress against objectives: Due to logistic constraints, no satellite telemetry was conducted at Casey or Macquarie Island this year, but preliminary surveys of the region were conducted for both elephant and Weddell seals (see report for 2753). However we did deploy CTD satellite tags on elephant seals at Isles Kerguelen and Elephant Island to contribute to the IPY MEOP program. These animals either traversed the Southern Ocean to forage over the Antarctic continental shelf, or remained very close to their breeding island, indicating that even within a population there are markedly different foraging strategies. Taken from the 2010-2011 Progress Report: Public summary of the season progress: Due to pre-departure accident for one of the field team leaders we were unable to reach Casey this year to complete that component of the program. Forty CTD satellite tags were successfully deployed at Vestfold Hills in January and February 2011. These tags are currently still transmitting from foraging locations along the Antarctic continental shelf and the ice edge. Project 2695 (ASAC_2695) was incorporated into this project. An Access database containing data from this project is available for download at the provided URL. The data have also been loaded into the Australian Antarctic Data Centre's ARGOS tracking database. The database can be accessed at the provided URLs.
-
In September 2006, twenty-three scientists from six countries attended an Experts Workshop on Bioregionalisation of the Southern Ocean held in Hobart, Australia. The workshop was hosted by the Antarctic Climate and Ecosystems Cooperative Research Centre, and WWF-Australia, and sponsored by Antarctic expedition cruise operator, Peregrine Adventures. The workshop was designed to assist with the development of methods that might be used to partition the Southern Ocean for the purposes of large-scale ecological modelling, ecosystem-based management, and consideration of marine protected areas. The aim of the workshop was to bring together scientific experts in their independent capacity to develop a 'proof of concept' for a broad-scale bioregionalisation of the Southern Ocean, using physical environmental data and satellite-measured chlorophyll concentration as the primary inputs. Issues examined during the workshop included the choice of data and extraction of relevant parameters to best capture ecological properties, the use of data appropriate for end-user applications, and the relative utility of taking a hierarchical, non-hierarchical, or mixed approach to regionalisation. The final method involved the use of a clustering procedure to classify individual sites into groups that are similar to one another within a group, and reasonably dissimilar from one group to the next, according to a selected set of parameters (e.g. depth, ice coverage, temperature). The workshop established a proof of concept for bioregionalisation of the Southern Ocean, demonstrating that this analysis can delineate bioregions that agree with expert opinion at the broad scale. Continuation of this work will be an important contribution to the achievement of a range of scientific, management and conservation objectives, including large-scale ecological modelling, ecosystem-based management and the development of an ecologically representative system of marine protected areas. This metadata record provides links to the report from that workshop, the appendices to that report, and the ArcGIS files and Matlab code used during the workshop. The report is in PDF format. The Appendices to the report are in PDF format and contain: Appendix 1: Approaches to bioregionalisation - examples presented during the workshop Antarctic Environmental Domains Analysis CCAMLR Small-Scale Management Units for the fishery Antarctic krill in the SW Atlantic Australian National Bioregionalisation: Pelagic Regionalisation Selecting Marine Protected Areas in New Zealand's EEZ Appendix 2: Technical information on approach to bioregionalisation Appendix 3: Descriptions of datasets used in the analysis Appendix 4: Results of secondary regionalisation using ice and chlorophyll data Appendix 5: Biological datasets of potential use in further bioregionalisation work Appendix 6: Details of datasets, Matlab code and ArcGIS shapefiles included on the CD The ArcGIS archive is in zip format and contains the shapefiles and other ArcGIS resources used to produce the figures in the report. The Matlab archive is in zip format and contains the Matlab code and gridded data sets used during the workshop. See the readme.txt file in this archive for more information. Description of datasets Sea surface temperature (SST) Mean annual sea surface temperatures were obtained from the NOAA Pathfinder satellite annual climatology (Casey and Cornillon 1999). This climatology was calculated over the period 1985-1997 on a global 9km grid. Monthly values were averaged to obtain an annual climatology. Casey, K.S. and P. Cornillon (1999) A comparison of satellite and in situ based sea surface temperature climatologies, J. Climate, vol. 12, no. 6, pp. 1848-1863. Bathymetry Depth data were obtained from the GEBCO digital atlas (IOC, IHO and BODC, 2003). These data give water depth in metres and are provided on a 1-minute global grid. Centenary Edition of the GEBCO Digital Atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans, British Oceanographic Data Centre, Liverpool, U.K. See http://www.gebco.net and https://www.bodc.ac.uk/projects/data_management/international/gebco/ A metadata record can be obtained from: http://data.aad.gov.au/aadc/metadata/metadata_redirect.cfm?md=AMD/AU/gebco_bathy_polygons Nutrient concentrations Silicate and nitrate concentrations were obtained from the WOCE global hydrographic climatology (Gouretski and Koltermann, 2004). This climatology provides oceanographic data on a 0.5 degree regular grid on a set of 45 standard levels covering the depth range from the sea surface to 6000m. The silicate and nitrate concentrations were calculated from seawater samples collected using bottles from stationary ships. The nutrient concentrations at the 200m depth level were used here; concentrations are expressed in micro mol/kg. https://odv.awi.de/data/ocean/woce-global-hydrographic-climatology/ Gouretski, V.V., and K.P. Koltermann, 2004: WOCE Global Hydrographic Climatology. Technical Report, 35, Berichte des Bundesamtes fur Seeschifffahrt und Hydrographie. Insolation (PAR) The mean summer climatology of the photosynthetically-active radiation (PAR) at the ocean surface was obtained from satellite estimates (Frouin et al.). These PAR estimates are obtained from visible wavelengths and so are not available over cloud- or ice-covered water, or in low-light conditions including the austral winter. Hence in the sea ice zone, this climatology represents the average PAR calculated over the period for which the water was not ice-covered. https://oceancolor.gsfc.nasa.gov/cgi/l3 Robert Frouin, Bryan Franz, and Menghua Wang. Algorithm to estimate PAR from SeaWiFS data Version 1.2 - Documentation. Chlorophyll-a Mean summer surface chlorophyll-a concentrations were calculated from the SeaWiFS summer means. We used the mean of the 1998-2004 summer values. Chlorophyll concentrations are expressed in mg/m^3. https://oceancolor.gsfc.nasa.gov/cgi/l3 Sea ice We calculated the mean fraction (0-1) of the year for which the ocean was covered by at least 15% sea ice. These calculations were based on satellite-derived estimates of sea ice concentration spanning 1979-2003. http://nsidc.org/data/nsidc-0079.html Comiso, J. (1999, updated 2005). Bootstrap sea ice concentrations for NIMBUS-7 SMMR and DMSP SSM/I. Boulder, CO, USA: National Snow and Ice Data Center. Digital media. Southern Ocean Fronts These are the front positions as published by Orsi et al. (1995). Orsi A, Whitworth T, III, Nowlin WD, Jr (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Research 42:641-673 Use of these data are governed by the following conditions: 1. The data are provided for non-commercial use only. 2. Any publication derived using the datasets should acknowledge the Australian Antarctic Data Centre as having provided the data and the original source (see the relevant metadata record listed in the description below for the proper citation).
-
A register of all voyages that contribute to the science of the Australian Antarctic Programme. It includes voyages that opportunistically collect marine data while underway. Details have been gleaned from historic paper records, publications, voyage situation reports and reports from marine science cruises. Products linked to each voyage include a map, voyage schedule and a list of any science related activities on the voyage. The application links to various external resources within the Antarctic Division such as daily shipping reports, passenger lists and various sets of data. NOTE - Support for this application was put "on hold" after the 2013/2014 season. Hence, only voyages up until that season are included in the database. This decision may be revisited at some time in the future.