EARTH SCIENCE > CRYOSPHERE > SEA ICE > PACK ICE
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
The date are of the highest amplitudes across the frequency range of Weddell seal tonal trills (an underwater call made by males). Each column presents the results of a frequency amplitude measure that is relative to the highest amplitude of that trill, independent of the frequency at which that amplitude occurs. This removes the influence of the overall amplitude of the call which is influence of the distance the sea was from the hydrophone when the recording was made. Four trill patterns were identified (A - D) and a number of trills not included in the analyses are classed as type X. The X call types were excluded because the original recording was later found to be overloaded or partly masked by ice noises or the calls of another seal. Analysis details are included in the accompanying manuscript. The accompanying Excel file contain the frequency amplitude measurements of individual trills at two location groups: the Aurora Truning location at the anchorage location of the Aurora Australis near Davis and the other group is a number of breeding groups in the Vestfold Hills. Variable A is the frequency in Hz, Variables B to DH at the Aurora Turning location and B to BY at the Davis locations are data from individual trills. Rows 2 or 3 indicate the four Trill patterns, A, B, C or D, with an X designation for trills that were not included in the analyses due to limited frequency ranges or overloading of the original recordings (that was discovered later in the analyses). ssize or samplesize is the number of trills that were at each frequency bin.
-
Metadata record for data from ASAC Project 1117 See the link below for public details on this project. ---- Public Summary from Project ---- The aim of this project is to determine how feasible it is to regularly sample the pelagic under-ice community during winter at a coastal site near Mawson. Very few attempts have been made to sample the water column under the ice during the winter months and the processes that occur during this period remain critical gaps in our knowledge of the Antarctic marine ecosystem. ------------------------------------- The pelagic community under the Mawson sea ice was sampled during the winter of 2001 using 'light trap' sampling devices. The 'light traps' were tested at various depths in a range of configurations to determine whether they were an appropriate instrument to sample the winter pelagic community under the ice. Fourteen successful deployments of the light traps were made on seven separate occasions from 12 June to 12 September 2001. The light traps were deployed at three different depths - the underside of the sea ice, mid water, and just above the sea floor. Two different light sources were used to attract the animals, namely fluorescent tubes and cyalume sticks. Two different configurations of the traps were tested to retain the animals inside the trap - one with plastic flaps to trap the animals, the other with no flaps, allowing the animals to move freely inside the trap. The light traps were deployed and retrieved during darkness to avoid any influence of ambient light. The objectives of the project were met and it is assessed that the pelagic community in winter can be effectively sampled using this methodology. A result of particular interest is the success of the traps in capturing Pleuragramma antarctica, a species which has proven difficult to capture using traditional sampling methods such as nets.
-
Despite being a ubiquitous and abundant component of the Southern Ocean ecosystem, pack-ice seals (crabeater, Ross and leopard seals) are notoriously difficult to census as they are sparsely distributed over large regions of remote pack-ice. Historically, population censuses have been made from ship- or helicopter-based surveys, which are expensive and logistically difficult, and this inevitably leads to data which are limited, in time and space. High resolution images allow us now to accurately census seals e.g. elephant and Weddell seals at unprecedented spatial and temporal scales. Using this technology promises to provide regular estimates of the numbers of pack-ice seals in important regions such as Prydz Bay This study will develop techniques to survey pack-ice seals from high resolution satellite images, including automatic detection functions and a preliminary habitat model based on the characteristics of the ice contained in the images.
-
Skin temperature data over the East Antarctic pack ice zone were recorded by the RAPPLS airborne instrument package using a KT-19II infrared pyrometer. The KT-19II infrared pyrometer was manufactured by heitronics, and sees a spectrum of 8-12um. IR and location data were logged to a Windows PC using a serial port logger developed by AAD science technical support. Due to some logging issues, substantial post-processing work was done by the AAD sea ice science group to ensure that recorded temperatures were correctly geolocated. Skin temperature data were not collected on two flights: Alpha [12 September 2007] and Foxtrot [14 September 2007] On two further flights, data were collected but the raw log files were so badly munged that we could not confidently tie locations to temperatures. These were: Tango [30 September 2007] and Uniform [1 October 2007] The data are presented in .csv files for each flight showing time and date. lat, lon, recorded temp [deg K], temp converted to C. To visualise the data, .kmz files that can be viewed in Google Earth or NASA's worldwind virtual globes are provided, one for each flight. Skin temperature is represented by a coloured dot at each measurement point. Clicking on each poijt will show its location and recorded temperature. The description field of each .kmz file provides a colour scale.
-
From the abstract of one of the papers: Oxygen microelectrodes were used to measure the photosynthetic rates of Antarctic fast ice algal mats. Using the oxygen flux across the diffusive boundary layer below the fast ice at Davis, a productivity range of 0-1.78mg C per square metre per hour was measured. This is at the lower end of fast ice productivity estimates and suggests that conventional carbon 14 techniques may overestimate sea ice algal mat productivity. Photosynthetic capacity (P max) approached 0.05 mg per C.(mg chlorophyl a) per hr. Onset of photosynthesis saturation, E k, was found at about 14 micromol photons per square metre per second. The irradiance of photoinhibition onset, E inh, was about 20 micromol photons per square metre per second and the irradiance at the compensation point, E c, was 4 micromol photons per square metre per second.
-
These data describe pack ice characteristics in the Antarctic sea ice zone. These data are in the ASPeCt format. National program: United States Vessel: Nathaniel B. Palmer Dates in ice: 1 Sept 2007 - 31 Oct 2007 Observers: Penelope Wagner, John Pena, Sarah Anderson and others. Summary of voyage track: 06/09 3 GMT first record of ice edge at approx. 63 degrees 22 S, and 68 degrees 25 W toward Palmer Station, Antarctica in the Amundsen Sea due to electrical fire that began in Drake's Passage en route to the Bellingshausen Sea, Antarctica. 19 GMT arrived at NBP at Palmer Station, Antarctica at 64 degrees 46S and 64 degrees 04W to respond to safety protocol with NSF and Raytheon. 08/09 18:30 GMT depart Palmer Station toward Punta Arenas, Chile port. 09/09 22 GMT reach ice edge toward Chile. 24/09 17 GMT first record of ice edge at approx. 66 degrees 47S and 89 degrees 05W toward ice station Belgica in Bellingshausen Sea, Antarctica. 27/09 23GMT NBP parked at approximately 70 degrees 41S and 90 degrees 58W at Ice Station Belgica to perform 4 week station work. 24/10 10:30 GMT depart Ice Station Belgica toward Punta Arenas, Chile 27/10 8GMT reached ice edge. Total observations: 192 The fields in this dataset are: SEA ICE CONCENTRATION SEA ICE FLOE SIZE SEA ICE SNOW COVER SEA ICE THICKNESS SEA ICE TOPOGRAPHY SEA ICE TYPE RECORD DATE TIME LATITUDE LONGITUDE OPEN WATER TRACK SNOW THICKNESS SNOW TYPE SEA TEMPERATURE AIR TEMPERATURE WIND VELOCITY WIND DIRECTION FILM COUNTER FRAME COUNTER FOR FILM VIDEO RECORDER COUNTER HH:MM:SS VISIBILITY CODE CLOUD IN OKTAS WEATHER CODE COMMENTS
-
ASPeCt is an expert group on multi-disciplinary Antarctic sea ice zone research within the SCAR Physical Sciences program. Established in 1996, ASPeCt has the key objective of improving our understanding of the Antarctic sea ice zone through focussed and ongoing field programs, remote sensing and numerical modelling. The program is designed to complement, and contribute to, other international science programs in Antarctica as well as existing and proposed research programs within national Antarctic programs. ASPeCt also includes a component of data rescue of valuable historical sea ice zone information. The overall aim of ASPeCt is to understand and model the role of Antarctic sea ice in the coupled atmosphere-ice-ocean system. This requires an understanding of key processes, and the determination of physical, chemical, and biological properties of the sea ice zone. These are addressed by objectives which are: 1) To establish the distribution of the basic physical properties of sea ice that are important to air-sea interaction and to biological processes within the Antarctic sea-ice zone (ice and snow cover thickness distributions; structural, chemical and thermal properties of the snow and ice; upper ocean hydrography; floe size and lead distribution). These data are required to derive forcing and validation fields for climate models and to determine factors controlling the biology and ecology of the sea ice-associated biota. 2) To understand the key sea-ice zone processes necessary for improved parameterization of these processes in coupled models. These ASPeCt measurements were taken onboard the Aurora Australis during the SIPEX voyage in the 2007-2008 summer season.
-
Metadata record for data from ASAC Project 1060 See the link below for public details on this project. Taken from the referenced publications: Sea ice exhibits a marked transition in its fluid transport properties at a critical brine volume fraction Pc of about 5 percent, or temperature Tc of about -5 degrees Celsius for salinity of 5 parts per thousand. For temperatures warmer than Tc brine carrying heat and nutrients can move through the ice, whereas for colder temperatures the ice is impermeable. This transition plays a key role in the geophysics, biology, and remote sensing of sea ice. Percolation theory can be used to understand this critical behaviour or transport in sea ice. The similarity of sea ice microstructure to compressed powders is used to theoretically predict Pc of about 5 percent. The snow cover on Antarctic sea ice often depresses the ice below sea level, allowing brine or seawater to infiltrate, or flood the snowpack. This significantly reduces the thermal insulation properties of the snow cover, and increases the ocean/atmosphere heat flux. The subsequent refreezing of this saturated snow or slush layer, to form snow-ice, can account for a significant percentage of the total ice mass in some regions. The extent of saturated snow cannot presently be estimated from satellite remote-sensing data and, because it is often hidden by a layer of dry snow, cannot be estimated from visual observations. Here, we use non-parametric statistics to combine sea-ice and snow thickness data from drillhole measurements with routine visual observations of snow and ice characteristics to estimate the extent of brine-infiltrated snow. During a field experiment in July 1994, while the R.V. Nathaniel B. Palmer was moored to a drifting ice floe in the Weddell Sea, Antarctica, data were collected on the sea-ice and snow characteristics. We report on the evolution of ice which grew in a newly opened lead. As expected with the cold atmospheric conditions, congelation ice initially formed in the lead. Subsequent snow accumulation and large ocean heat fluxes resulted in melt at the base of the ice, and enhanced flooding of the snow on ice surface. This flooded snow subsequently froze, and, five days after the lead opened, all the congelation ice had melted and twenty-six centimetres of snow ice had formed. We use measured sea-ice and snow salinities, thickness and oxygen isotope values of the newly formed lead ice to calculate the salt flux to the ocean. Although there was a salt flux to the ocean as the ice initially grew, we calculate a small net fresh-water input to the upper ocean by the end of the 5 day period. Similar processes of basal melt and surface snow-ice formation also occurred on the surrounding, thicker sea ice. Oceanographic studies in this region of the Weddell Sea have shown that salt rejection by sea-ice formation may enhance the ocean vertical thermohaline circulation and release heat from the deeper ocean to melt the ice cover. This type of deep convection is thought to initiate the Weddell polynya, which was observed only during the 1970s. Our results, which show than an ice cover can form with no salt input to the ocean, provide a mechanism which may help explain the more recent absence of the Weddell polynya.
-
During the winter and spring of 2002, underwater calling rates were measured near mid-day on an opportunistic basis at 7 breeding sites and, at two breeding sites, over 24 hour periods once a month. The data were analysed with respect to reproductive season (early ice formation, prebreeding, pupping and mating) and if the recordings were made when it was dark or twilight/light. Taken from the abstract of the paper referenced below: Underwater vocalisation monitoring and surveys, both on ice and underwater, were used to determine if Weddell seals (Leptonychotes weddellii) near Mawson Station, Antarctica, remain under the fast ice during winter within close range of breeding sites. Daytime and nighttime underwater calling rates were examined at seven breeding sites during austral winter and spring to identify seasonal and diel patterns. Seals rarely hauled out at any of the sites during winter, although all cohorts (adult males, females, and juveniles) were observed underwater and surfacing at breathing holes throughout winter (June-September) and spring (October-December). Seal vocalisations were recorded during each sampling session throughout the study (n=102 daytime at seven sites collectively, and n=5 24-h samples at each of two sites). Mean daytime calling rate was low in mid-winter (July) (mean = 18.9 plus or minus 7.1 calls per minute) but increased monthly, reaching a peak during the breeding season (November) (mean = 62.6 plus or minus 15.7 calls per minute). Mean nighttime calling rate was high throughout the winter and early spring (July-October) with mean nocturnal calling rate in July (mean = 61.8 plus or minus 35.1 calls per minute) nearly equal to mean daytime calling rate in November (during 24-h daylight). Reduced vocal behaviour during winter daylight periods may result from animals utilising the limited daylight hours for nonvocal activities, possibly feeding. The following study sites were among those used in this project (provided by Phil Rouget): - Forbes site (identified as Site 6 in the paper) is located at Forbes Glacier (approx. 0.5 km to the west of the glacier tongue and approximately 200 meters offshore of the mainland). (67 degrees 35.256 minutes S, 62 degrees 16.756 minutes E) - Kista site is located in the middle of Kista Strait (site 7 in the Marine Mammal Science paper). (67 degrees, minutes 33.840 S, 62 degrees 47.402, minutes E) - SPA site was our site located just west of the western boundary of the SPA which itself is located west of Mawson and east of Forbes Glacier. (Site 2 in Marine Mammal Science paper). (67 degrees 35.179 S, 62 degrees 25.425 minutes E) - McDonald Islands (or Rocks) was the site located North/NorthWest of Kista Strait, as it is named so on the Framens Mtn. Nautical Chart. From memory, it was approximately 12 km north/north west of Mawson Station. (This was site 5 in the Marine Mammal Science paper). (67 degrees 29.414 minutes S, 62 degrees 41.011 minutes E) - Stewart Rocks (also named Sewart Rocks on an alternative map) is located due north of Mawson Station, also by about 12 km. (East of McDonald site, and North East of Kista). This was site 4 in the Marine Mammal Science paper. (67 degrees 29.933 minutes S, 62 degrees 51.765 minutes E) - Anderson Rocks is an extensive group of rocky islets west of Auster Island (approximately 6-7 km offshore). This was site 3 in the Marine Mammal Science paper. (67 degrees 26.445 minutes S, 63 degrees 25.414 minutes E) - SEAL MO was located just north of Macey Hut by about 2 km. This was site 1 in the Marine Mammal Science paper. (67 degrees 23.399 minutes S, 63 degrees 47.977 minutes E) - Aside from SEAL MO and SPA, the names from all these sites are indicated in the Framnes Mountain Chart. An image showing the locations of the fields sites is also part of the download file. The fields in this dataset are: Site Period Day Calling rate photoperiod Sun time
-
These data describe pack ice characteristics in the Antarctic sea ice zone. These data are in the ASPeCt format. National program: United States Vessel: Endurance Dates in ice: 17 Jan 1998 - 13 Feb 1998 Observers: Steve Ackley, Elizabeth Hunke Summary of voyage track: 17/1 Ice edge at approx. 57S, 31W 17-20/1 South along approx 30W 21/1-2/2 West in toward Antarctic peninsula 3-13/2 East along ice shelf to approx. 8W 13/3 North to ice edge at approx. 68S, 12W The fields in this dataset are: SEA ICE CONCENTRATION SEA ICE FLOE SIZE SEA ICE SNOW COVER SEA ICE THICKNESS SEA ICE TOPOGRAPHY SEA ICE TYPE RECORD DATE TIME LATITUDE LONGITUDE OPEN WATER TRACK SNOW THICKNESS SNOW TYPE SEA TEMPERATURE AIR TEMPERATURE WIND VELOCITY WIND DIRECTION FILM COUNTER FRAME COUNTER FOR FILM VIDEO RECORDER COUNTER VISIBILITY CODE CLOUD WEATHER CODE COMMENTS