EARTH SCIENCE > CRYOSPHERE > SEA ICE > ICE DEFORMATION
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
Metadata record for data from ASAC Project 2504 See the link below for public details on this project. In this project a sea-ice model for application in Southern Ocean climate and forecasting studies will be developed to amend identified deficiencies in numerical models (i.e. unaccounted short-term dynamics; or non-suitable ice rheology). In-situ deformation and ice-stress data will be used to derive parameterisations suitable for the Southern Ocean pack. Antarctic sea ice is an important component of the Southern Hemisphere climate. It provides a habitat for algae, plankton and for larger species such as mammals or penguins. It is a transport medium for freshwater and biological matter. On the other hand it acts like a barrier between ocean and atmosphere in regard to the exchange of thermal energy, water vapour and gases. Sea ice affects the polar climate in many ways: E.g., by effectively insulating the ocean from the colder atmosphere the sea ice enables an advection of relatively warm water onto the shallow Antarctic continental shelf. This warmer water is then available to interact with other components of the climate system, such as by basal melting of the continental ice shelves [Jenkins and Holland, 2002]. Also, due to its high albedo, the sea ice has a large-scale effect on the net incoming solar radiation [Ebert et al., 1995] and reduces the absorption of solar energy into the upper ocean. The thermodynamic growth of seaice and the consequent desalination of the ice gives rise to a transport of salt from the ice into the ocean, which increases the water density over the shelf, thereby driving the deep vertical overturning cell in the global ocean circulation. High ice-growth rates (e.g., in regions of polynyas) are generally concentrated in small areas in shallow waters. These regions are often insufficiently resolved or even unresolved in coupled climate models, which are generally configured to run at a spatial resolution of 2 degree longitude by 1 degree latitude or coarser [Zhang and Hunke, 2001]. The specific objectives of this project are to: * identify the variabilities in the sea-ice characteristics and the underlying physical processes; * identify the time scales, at which the sea ice interacts with the ocean and atmosphere; * assess the contribution of sub-daily ice motion and deformation due to tidal forcing and inertial response to changes within the Antarctic ocean-ice-atmosphere system; * derive the impact of sub-daily ice dynamics on the sea-ice area, extent and mass on interannual and decadal time scales; * determine the scale effect of dynamic processes on the accuracy of modelled sea-ice parameters using a global high-resolution model; * identify model uncertainties through comprehensive validation studies. However, logistical problems prevented the project from collecting any data in the field. To overcome the paucity of planned buoy data we used the following data sets to address some of the aspects of the original proposal: 1) Sea-ice buoy data: ISPOL 2004: See AAS #2500 for metadata. 2) Numerical investigations: We have investigated the failure of sea ice using an isotropic model [Hibler, 1979], where ice strength is modelled as a random variable in the model space. In situ weakening was prescribed by a fracture-based Coulombic rheology [Hibler and Schulson, 2000]. We realised this by parameterising weakening with an ice-strength parameter of 1000 and initialising the ice strength across the model grid by random. The simulations were run over a 2000 km by 2000 km region and forced, from rest, with an idealised wind field. We analysed the sensitivity of failure to ice strength and wind stress as well as the intersection angle of the wind stress, and conducted idealised 2D failure experiments.
-
This dataset contains data collected during and after a series of ice deformation experiments. Seven of the experiments are controls, run at a constant temperature of either -2, -7 or -10 degrees celsius, and four involve a change in temperature partway through the experiment. Vertical displacement and temperature data were collected during the experiments, and microstructural data (fabric analyser thin sections) were collected at the conclusion of each experiment. The experimental methods and our interpretations are described thoroughly in Craw, et al. (in prep). In folder mechanical_data: - One .csv file for each experiment containing a header with information on experimental conditions, and columns of data corresponding to time (hours), vertical displacement (mm), and temperature (degrees celsius) throughout the experiment. This is raw data, there will be points recorded from before weights were added at the beginning of the experiment, and after the temperature was lowered at the end. in folder microstructural_data: - One .mat file for each experiment, containing microstructural data (spatially indexed Euler orientations) formatted to be read by the MTEX toolbox (https://mtex-toolbox.github.io/). There is also a file for an example of the starting material, "standard" laboratory ice. These data are converted from the .cis files which are generated by the G50 fabric analyser. - One .m script (plot_microstructural_data.m) containing commands for plotting spatial maps, histograms of grain size distribution and pole figures of c-axis orientation from the .mat files in this directory.
-
This dataset contains ice motion observations made under the Australian Antarctic Program, Projects 4593 and 4506. Measurements of ice motion where made on (land)fast ice on the eastern rim of the Amery Ice Shelf, Antarctica (69.2 degr. S, 76.3 degr. E) and on landfast ice in Gronfjorden, Svalbard (78.0 degr. N, 14.2 degr. E). Data was obtained using Spotter wave buoys (Sofar Ocean Technologies), hereafter wave buoys, and open-source ice motion loggers, hereafter ice buoys. Instrumentation was deployed on top of the sea ice with the main motivation to measure its vertical motion due to ocean waves. The wave buoys 3-axis measure motion at 2.5 Hz through GPS and have an accuracy of approximately 2 cm for the significant wave height. The ice buoys measure motion in 9-degrees-of-freedom at 10Hz using a VectorNAV VN-100 IMU, accuracy is O(mm) for short waves and O(cm) for long waves. Both instruments also record their geographical location through GPS. Full time series of their motion is processed on board and summaries are send through Iridium. For the wave buoy, this occurred at an interval of 30 minutes. For the ice buoy this occurred every 3 hours. In the dataset, WB and IB are abbreviations for wave buoy and ice buoy, respectively. This dataset covers 2-8 January 2020 for the Antarctic campaign (WB1, WB2, IB1, IB2) and 14-28 March for the Arctic campaign (IB3, IB4, IB5) and includes significant wave height, peak period and the geographical coordinates of the instrumentation. ‘Hs’ refers to significant wave height (in meters). ‘Tp’ refers to peak period (in seconds). Time is in UTC, and in Matlab’s datenum format (i.e. the number of days since year 0000). The geographical coordinates ‘lat’ and ‘lon’ (latitude and longitude, respectively) are in degrees. Note, as the ice buoys transmit the GPS coordinates and wave data in separate data messages, for the ice buoys ‘time’ refers to the reference time of the wave properties Hs and Tp, whereas ‘time_latlon’ refers to the reference time of the geographical coordinates. For the wave buoy, all data is transmitted in one message.
-
More than 50 scientists from eight countries conducted the Sea Ice Physics and Ecosystem eXperiment 2012 (SIPEX-2). The 2012 voyage built on information and observations collected in 2007, by re-visiting the study area at about 100-120 degrees East. This was the culmination of years of preparation for the Australian Antarctic Division and, more specifically, the ACE CRC sea-ice group who lead this international, multi-disciplinary, sea ice voyage to East Antarctica. Work began at the sea-ice edge and penetrated the pack ice towards the coastal land-fast ice. The purpose of SIPEX-2 was to investigate relationships between the physical sea-ice environment, marine biogeochemistry and the structure of Southern Ocean ecosystems. While the scientists and crew did not set foot on Antarctic terra firma, a number of multi-day research stations were set up on suitable sea ice floes, and a range of novel and state-of-the-art instruments were used. These included: A Remotely Operated Vehicle (ROV) to observe and film (with an on-board video camera) krill, and to quantify the distribution and amount of sea ice algae associated with ice floes. An Autonomous Underwater Vehicle (AUV) to study the three-dimensional under-ice topography of ice floes. Helicopter-borne instruments to measure snow and ice thickness, floe size and sea ice type. Instruments included a scanning laser altimeter, infrared radiometer, microwave radiometer, camera and GPS. Sea ice accelerometer buoys to measure sea ice wave interaction and its effect on floe-size distribution. Customised pumping systems and light-traps to catch krill from below the ice and on the sea floor. Available at the provided URL in this record, is a link to a file containing the locations of all ice stations from this voyage.