EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > ANIMALS/VERTEBRATES > BIRDS > PENGUINS
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
This dataset consists of two shapefiles created by Darren Southwell of the Australian Antarctic Division (AAD) by digitising the boundaries of adelie penguin colonies at the Rauer Group and the Vestfold Hills. The digitising was done from images resulting from the scanning and georeferencing of aerial photographs taken on 24 November 1993. The aerial photographs were taken for the AAD with a Linhof camera. Records of the photographs are included in the Australian Antarctic Data Centre's Aerial Photograph Catalogue.
-
A collection of at sea observations made of icebergs, seabirds and whales on the BROKE voyage of the Aurora Australis during the 1995-1996 summer season. The data are mostly text or csv files and document observations of icebergs, seabirds and whales, giving times and/or locations. Further supporting information may be included in the data download, or in other metadata records relating to the BROKE voyage (as opposed to the later BROKE-West voyage).
-
Australian Bird and Bat Banding Scheme Bird Banding records from the Australian Antarctic Territory and Heard Island, a subset of banding and recovery records from within Australian Antarctic Territory and Heard Island. The Australian Government under the auspices of the Australian Bird and Bat Banding Scheme (ABBBS) manages the collation of information on threatened and migratory bird and bat species. The information provided spans from 1953 to the present, and contains over 2 million records. This set comprises records of banding and recovery in the Australian Antarctic territory. Records are also included if the bird was recovered or banded outside this region. The ABBBS site is at http://www.environment.gov.au/science/bird-and-bat-banding.
-
This dataset collates data on occupancy of geographic sites by breeding Adelie penguins across east Antarctica between 37 degrees E -160 degrees E from the 1950s to the present day. A separate dataset contains a table and maps of geographic sites in East Antarctica where Adelie penguins could potentially breed. This occupancy dataset comprises a table of breeding sites and a table of occupancy observations. The breeding site table has a list of the geographic sites where breeding Adelie penguins have been observed at least once. The table contains for each breeding site, the names used for each site in the literature, the literature sources for those names, the geographic centroid of the breeding location within the geographic site, and any comments to help interpret the breeding site. The occupancy table contains observations of the presence or absence of breeding Adelie penguins at each breeding site and split-year breeding season obtained from the published primary and secondary literature and from the researchers' unpublished data. These data also include occupancy survey data collected as part of ASAC 2722 - see the related metadata record for more information.
-
Oblique hand-held photographs were taken of all Adelie penguin breeding colonies at Scullin Monolith from a fixed wing aircraft on 10 December 2010. These photographs were geo-referenced to a Worldview 2 satellite image of both monoliths taken on 26 January 2011 and the colony boundaries in the geo-referenced photos were digitised as shapefiles. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.
-
Occupancy surveys in November 2008 (Southwell and Emmerson 2013) found a total of 13 Adelie penguin breeding sites in the Rauer Group. The boundaries of breeding sub-colonies at 12 of these sites were subsequently mapped from vertical aerial photographs taken for abundance surveys on 21-23 November 2009. The remaining breeding site (IS_72922) was photographed obliquely from a helicopter using a hand-held camera on 20 December 2010. Colony boundaries for this site were drawn and digitised by eye. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.
-
Metadata record for data from ASAC Project 106 See the link below for public details on this project. From the abstracts of some of the referenced papers: This paper reports the results of the first aerial photographic survey of Adelie penguin colonies in the Prydz Bay region. The area surveyed extended from the northern Vestfold Hills to the Publications Ice Shelf. More than 325,000 pairs of Adelie penguins were estimated to be breeding in this region in 1981/82. The great majority of breeding Adelie penguins occurred in the northern half of the region surveyed, in the Vestfold hills and Rauer Islands, where most colonies were located. This is probably due to the typical pattern of summer sea-ice dispersal, which usually results in sea-ice leaving the northern areas of the coast first. Prydz Bay supports nine seabird species that breed on the Princess Elizabeth Land coast: two penguins, six Procellariiformes and one skua. Information on their diet is reviewed. Apart from the scavenging South Polar Skua Catharacta maccormicki and Southern Giant Petrel Macronectes giganteus, three diet types were distinguished. First, the Emperor Penguin Aptenodytes forsteri ate almost exclusively fish; secondly the Adelie Penguin Pygoscelis adeliae, Cape Petrel Daption capense, and Wilson's Storm Petrel Oceanites oceanicus consumed at least 60% euphausiid, the remainder largely fish; and thirdly, a diet of greater than 60% fish, the rest euphausiids, was taken by the Southern Fulmar Fulmarus glacialoides, Antarctic Petrel Thalassoica antarctica and Snow Petrel Pagodroma nivea. Seasonal fluctuation in composition of Adelie Penguin, Cape Petrel and Southern Fulmar diet suggested either fluctuating foraging ranges or movement of Euphausia superba inshore during summer months. Annual fluctuation in diet composition was correlated with seabird reproductive success. When E. crystallorophias dominated the euphausiid component of Adelie Penguin diet, reproductive success was high; when E. superba was scarce in Prydz Bay, Antarctic Petrel and Southern Fulmar productivity was low. Breeding phenology, success and nest attendance of Antarctic Petrels Thalassoica antarctica and Southern Fulmars Fulmarus glacialoides at the Rauer Group, East Antarctica, are discussed. Most data were collected on Hop Island in January and February 1988, and from December 1988 to March 1989. Observations extended from the late stages of incubation to post-guard or fledging periods. Some annual breeding indices collected from 1983 onwards at census sites are compared with meteorological data and the extent of fast ice for the nearby Davis Station. Both species had a restricted hatching period, reflecting a brief and synchronised egg-laying period, reflecting a brief and synchronised egg-laying period, typical of other southern fulmarine petrels. Antarctic Petrel chicks hatched from 4 January (1989) and c. 90% appeared by 16 January (both years). Southern Fulmar hatching began on 21 January (1988) and almost all chicks appeared by 6 February (both years). Adult attendance at nests declined with increasing chick age. For Antarctic Petrels, this was most marked at about 11 days; no chicks had continuously attendant adults after 24 days, although adults returned to feed them. Incubation shifts following hatching and the post-guard period started, on average, 13 days after hatching. Egg and chick losses varied between years and sites. The South Polar Skua Catharacta maccormicki was apparently involved in the majority of losses. Nest sites of both species resemble those elsewhere: Southern Fulmars may require steeper sites, allowing a fall away from colonies. Antarctic Petrels are less affected by accumulation of snow or ice and shelter from katabatic winds may be important. Although weather may modify breeding success locally, annual success must depend on the ability of parents to produce eggs and feed chicks: this may be moderated by the extent and persistence of pack ice. Annual chick productivity and breeding success, recorded at four Adelie penguin, Pygoscelis adeliae, colonies at Magnetic Island in eastern Prydz Bay, are presented for the seven breeding seasons 1981/82 to 1987/88. The adult breeding population remained relatively stable during the first 4 years of the study, and increased in hte last 2 years. Substantial annual variation in breeding success occurred over the study period, ranging between an estimated 0.69 and 1.33 chicks surviving until late creche stage per nest for seasons 1985/86 and 1982/83 respectively. Annual patterns of chick productivity in southern fulmar, Fulmarus glacialoides, and Antarctic petrel, Thalassoica antarctica, populations within Prydz Bay were synchronous with those of Adelie penguins. In the years of highest and lowest reproductive performance, prey abundance within the likely foraging areas was correspondingly high and low. Reproductive performance was greatest in years when fast-ice breakout occurred before the end of December (1981/82, 1982/83. 1986/87 and 1987/88) and lowest when the breakout was after (1983/84, 1984/85 and 1985/86) and pack-ice cover persisted within the foraging range of the birds during the chick-rearing period.
-
This dataset contains the results from satellite tracking the movements of Adelie Penguins (Pygoscelis adeliae) from Magnetic Island near Davis Station, Antarctica. By the use of satellite fixes the foraging locations of the penguins were determined. Monitoring occurred during the 1993-94 and 1994-95 summer seasons. This work was completed as part of ASAC project 2205 (ASAC_2205), 'Adelie penguin research and monitoring in support of the CCAMLR Ecosystem Monitoring Project'. Further work in the Davis area was completed under other projects.
-
Seabird surveys in January - March 2006 of a poorly known area of the Southern Ocean adjacent to the East Antarctic coast identified six seabird communities, several of which were comparable to seabird communities identified both in adjacent sectors of the Antarctic, and elsewhere in the Southern Ocean. These results support previous proposals that the Southern Ocean seabird community is characterised by an ice-associated assemblage and an open-water assemblage, with the species composition of the assemblages reflecting local (Antarctic-resident) breeding species, and the migratory routes and feeding areas of distant-breeding taxa, respectively. Physical environmental covariates such as sea-ice cover, distance to continental shelf and time of year influenced the distribution and abundance of seabirds observed, but the roles of these factors in the observed spatial and temporal patterns in seabird assemblages was confounded by the duration of the survey. Occurrence of a number of seabird taxa exhibited significant correlations with krill densities at one or two spatial scales, but only three taxa (Arctic tern, snow petrel and dark shearwaters, i.e. sooty and short-tailed shearwaters) showed significant correlations at a range of spatial scales. Dark shearwater abundances showed correlations with krill densities across the range of spatial scales examined. This work was conducted on the BROKE-West voyage of the Aurora Australis.
-
This dataset comprises counts of Adelie penguins attending breeding sites from images obtained with 20 remotely operating cameras across East Antarctica. Counts were made of adults, occupied nests and chicks every few days throughout the breeding season from October through to February. Locations of cameras are given in an associated dataset (Photographic images of seabird nesting sites in the Antarctic, collected by remote camera) which also provides the images obtained from the cameras. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.