From 1 - 8 / 8
  • Diatom and biogenic particle fluxes were investigated over a two-year and six-year periods at the Subantarctic and Polar Frontal Zones, respectively, in the Australian Sector of the Southern Ocean. Both sites were located along ~ 140 degrees E: station 47 degrees S was set on the abyssal plain of the central SAZ whereas station 54 degrees S was placed on a bathymetric high of the Southeast Indian Ridge in the PFZ. The data sets contain diatom species and biogeochemical flux data measured at 1000 m at the 47 degrees S site between 1999-2001 and at 800 m at the 54 degrees S site during six selected years between 1997-2007. All traps were MacLane Parflux sediment traps: conical in shape with a 0.5 m2 opening area and equipped with a carousel of 13 or 21 sampling cups. Shortest intervals corresponded with the austral summer and autumn ranging typically between 4.25 and 10 days, whereas the longest intervals were 60 days and corresponded with winter. Total fluxes of particulates at both traps were highly seasonal, with maxima registered during the austral spring and summer and very low fluxes during winter. Seasonality was more pronounced in the 54 degrees S site. Biogenic silica (SiO2) was the dominant bulk component in the PFZ while carbonate (CaCO3) dominated the particle fluxes at the SAZ. POC export was relatively similar between sites despite significant differences in the total diatom flux. Diatom frustules from 94 taxa were identified over the entire experiment. The dominant species of the diatom assemblage was Fragilariopsis kerguelensis at both sites, representing 43% and 59% of the integrated diatom assemblage at the 47 degrees S and 54 degrees S sites, respectively. Secondary contributors to the diatom assemblage at the 47 degrees S were Azpeitia tabularis, Thalassiosira sp. 1, Nitzschia bicapitata, resting spores of Chaetoceros spp., Thalassiosira oestrupii var. oestrupii, Hemidiscus cuneiformis and Roperia tesselata. Subordinate contributions to the diatom assemblage correspond to Pseudo-nitzschia lineola cf. lineola, Pseudo-nitzschia heimii, Thalassiosira gracilis group and Fragilariopsis pseudonana, Fragilariopsis rhombica and Thalassiosira lentiginosa. Data available: two excel files containing sampling dates and depths, raw counts, relative abundance and fluxes (valves m-2 d-1) of the diatom species, and biogenic particle fluxes measured at 1000 m and 800 m depth at the 47 degrees S and 54 degrees S sites, respectively. Each file contains four spreadsheets: raw diatom valve counts, relative abundance of diatom species and valve flux of diatom species and biogenic particle composition and fluxes. Detailed information of the column headings is provided below. Cup - Cup (=sample) number Depth - vertical location of the sediment trap in meters below the surface Mid-point date - Mid date of the sampling interval Length (days) - number of days the cup was open Girdle bands instead of valves were counted for Dactyliosolen antarcticus Castracane. Therefore, D. antarcticus girdles counts were not included in relative abundance calculations. Dates of data collection: 47 degrees S site: July 1999 - October 2001 (two-year record) 54 degrees S site: September 1997 - February 1998, July 1999 - August 2000, November 2002 - October 2004 and December 2005 - October 2007 (six-year record).

  • This dataset was collected as part of an honours project by Jessica Wilks at Macquarie University (submitted May 2012). The samples analysed were taken from an expedition conducted by Dr Leanne Armand in 2011 as part of the KEOPS2 mission (KErguelen: compared study of the Ocean and the Plateau in Surface water). During this mission 7 locations (A3-1, A3-2, E1-3, E14W2, NPF-L, R2 and TEW) around the Kerguelen Plateau were sampled for seafloor sediment. This study involved identification of over 50 species of diatoms as part of a species assemblage/ distribution study. A photograph of each diatom encountered in this study is included in the attached plates.

  • This dataset was collected as part of an honours project by Jessica Wilks at Macquarie University (submitted May 2012). The samples analysed were taken from an expedition conducted by Dr Leanne Armand in 2011 as part of the KEOPS2 mission (KErguelen: compared study of the Ocean and the Plateau in Surface water). During this mission 7 locations (A3-1, A3-2, E1-3, E14W2, NPF-L, R2 and TEW) around the Kerguelen Plateau were sampled for seafloor sediment. Each attached spreadsheet represents the data from one of these locations. Three tubes of sediment were taken for each location. The data within each spreadsheet is separate for the three tubes. After the tubes of seafloor sediment were processed to remove organic material and carbonates (leaving nothing but siliceous material, primarily diatoms) slides were made with a small amount of material, three slides per tube of sediment. Diatoms were identified using a light microscope at 40x magnification. Approximately 400 frustules were counter per tube (ie per set of 3 slides) in order to represent the diversity of the species present. The number of each species or subspecies of diatom are tallied in the spreadsheets attached. Species identifications follow Armand et al 2008. Other information in the attached spreadsheets includes the seafloor depth at the point of sampling, the distance from the Kerguelen shoreline at the point of sampling, the amount of suspended material used on each slide, the number of field of view (at 40X) viewed to count the quota of 400 diatom frustules, and the calculated number of frustules/ gram of dry sediment weight. Counting protocol: centric frustules were counted only when 1) more than half of the frustule was intact; and 2) the frustule was clearly identifiable. If 1) but not 2) then the frustule was counted as "unidentified centric". For Rhizosolenia spp, frustules were couned if the apex was present and identifiable, otherwise it was counted as "R. unknown". Thalassiothrix and Tricotoxon were only counted if one end was present and identifiable. The number was later divided by 2, to give the number of complete frustules. Abbreviations: A. spp= Actinocyclus As. spp= Asteromphalus Az. spp= Azpeita Ch. spp= Chaetoceros Co. spp= Coscinodiscus C. spp= Cocconeis D. spp= Dactyliosen E. spp= Eucampia F. spp= Fragilariopsis O. spp= Odontella P. spp= Paralia Po. spp= Porosira R. spp= Rhizosolenia Th. spp= Thalassionema T. spp= Thalassiosira Locations A3-1, Kerguelen Plateau: -50.65333 S, 72.04 E A3-2, Kerguelen Plateau: -50.64722 S, 72.07 E E1-3, Kerguelen Plateau: -48.11667 S, 71.96667 E E14W2, Kerguelen Plateau: -48.7775 S, 71.43833 E NPF-L, Kerguelen Plateau: -48.62417 S, 74.81222 E R2, Kerguelen Plateau: -50.39389 S, 66.69944 E TEW, Kerguelen Plateau: -49.16083 S, 69.83389 E

  • Diatom and biogenic particle fluxes were investigated over a one-year period (2001-02) at the southern Antarctic Zone in the Australian Sector of the Southern Ocean. Two vertically moored sediment traps were deployed at 60 degrees 44.43'S 139 degrees 53.97' E at 2000 and 3800 m below sea-level. In these data sets we present the results on the temporal and vertical variability of total diatom flux, species composition and biogenic particle fluxes during a year. A detailed description of the field experiment, sample processing and counting methods can be found in Rigual-Hernandez et al. (2015). Total fluxes of particulates at both traps were highly seasonal, with maxima registered during the austral summer (up to 1151 mg m-2 d-1 at 2000 m and 1157 mg m-2 d-1 at 3700 m) and almost negligible fluxes during winter (up to 42 mg m-2 d-1 at 2000 m and below detection limits at 3700 m). Particulate fluxes were slightly higher at 2000 m than at 3700 m (deployment average = 261 and 216 mg m-2 d-1, respectively). Biogenic silica (SiO2) was the dominant bulk component, regardless of the sampling period or depth (deployment average = 76% at 2000 and 78% at 3700 m). Highest relative contribution of opal was registered from the end of summer through early-autumn at both depths. Secondary contributors were carbonate (CaCO3) (7% at 2000 m and 9% at 3700 m) and particulate organic carbon (POC) (1.4% at 2000 m and 1.2% at 3700 m). The relative concentration of carbonate and POC was at its highest in austral spring and summer. Diatom frustules from 61 taxa were identified over the entire experiment. The dominant species of the diatom assemblage was Fragilariopsis kerguelensis with a mean flux between 53 x 106 and 60 x 106 valves m-2 day-1 at 2000 m (annualized mean and deployment average, respectively). Secondary contributors to the diatom assemblage at 2000 and 3700 m were Thalassiosira lentiginosa, Thalassiosira gracilis var. gracilis, Fragilariopsis separanda, Fragilariopsis pseudonana, Fragilariopsis rhombica, Fragilariopsis curta and Azpeitia tabularis. Data available: two excel files containing sampling dates and depths, raw counts, relative abundance and fluxes (valves m-2 d-1) of the diatom species, and biogenic particle fluxes found at 2000 m and 3700 m depth. Each file contains four spreadsheets: raw diatom valve counts, relative abundance of diatom species and valve flux of diatom species and biogenic particle composition and fluxes. Detailed information of the column headings is provided below. Cup - Cup (=sample) number Depth - vertical location of the sediment trap in meters below the surface Mid-point date - Mid date of the sampling interval Length (days) - number of days the cup was open Girdle bands instead of valves were counted for Dactyliosolen antarcticus Castracane. Therefore, D. antarcticus girdles counts were not included in relative abundance calculations

  • This data provides the absolute abundance of diatom valves from cores recovered from the George V coast as part of the CEAMARC (Collaborative East Antarctic Marine Census) mission of 2007-2008. Data are presented as valves/gram dry weight of sediment. All samples analyzed were core top samples, however no age constraints have been established. Chaetoceros resting spores were included in the absolute abundance calculations. Slides were prepared following Rathburn et al 1997.

  • This dataset contains the abundance of diatom species found in the surface sediments from cores collected as part of the CEAMARC (Collaborative East Antarctic Marine Census) mission. The cores were collected from the George V basin along the Antarctic coast. Latitude, longitude and water depth data are included for each site. Sediments were prepared following standard diatom preparation techniques (Rathburn et al 1997).

  • The collection aims to showcase the range of Southern Ocean diatom species found in the major hydrological provinces of the Australian Sector of the Southern Ocean along the 140 degrees E. The collection includes specimens collected in the Sub-Antarctic Zone (SAZ), Polar Frontal Zone (PFZ) and Antarctic Zone (AZ). Samples were collected with McLane Parflux time series sediment traps placed at several depths in the SAZ (47 degrees S site), PFZ (54 degrees S site) and AZ and (61 degrees S site) during the decade 1997-2007. The shortest sampling intervals were eight days and corresponded with the austral summer and autumn, whereas the longest interval was 60 days and corresponded with austral winter. Split aliquots were obtained for taxonomic analysis via scanning electron microscopy (SEM). For improved taxonomic imaging, samples were treated with hydrochloric acid and hydrogen peroxide to remove carbonates and organic matter, respectively. A micropipette was used to transfer the suspension of selected samples to a round-glass cover slip following standard decantation method outlined by Barcena and Abrantes (1998). Samples were air-dried and coated with gold for SEM analysis. SEM analysis was carried out using a JEOL 6480LV scanning electron microscope. Taxonomy Diatoms include all algae from the Class Bacillariophyceae and follow the standardised taxonomy of World Register of Marine Species (WoRMS). Order Asterolamprales Family Asterolampraceae Asteromphalus hookeri Ehrenberg Asteromphalus hyalinus Karsten Order Achnanthales Family Cocconeidaceae Cocconeis sp. Order Bacillariales Family Bacillariaceae Fragilariopsis curta (Van Heurck) Hustedt Fragilariopsis cylindrus (Grunow) Krieger Fragilariopsis kerguelensis (O'Meara) Hustedt Fragilariopsis pseudonana (Hasle) Hasle Fragilariopsis rhombica (O'Meara) Hustedt Fragilariopsis separanda Hustedt Nitzschia bicapitata Cleve Nitzschia kolaczeckii Grunow Nitzschia sicula (Castracane) Husted var. bicuneata (Grunow) Hasle Nitzschia sicula (Castracane) Husted var. rostrata Hustedt Pseudo-nitzschia heimii Manguin Pseudo-nitzschia lineola (Cleve) Hasle Pseudo-nitzschia turgiduloides Hasle Order Chaetocerotanae incertae sedis Family Chaetoceraceae Chaetoceros aequatorialis var. antarcticus Cleve Chaetoceros atlanticus Cleve Chaetoceros dichaeta Ehrenberg Chaetoceros peruvianus Brightwell Chaetoceros sp. Order Corethrales Family Corethraceae Corethron spp. Order Coscinodiscales Family Coscinodiscaceae Stellarima stellaris (Roper) Hasle et Sims Family Hemidiscaceae Actinocyclus sp. Azpeitia tabularis (Grunow) Fryxell et Sims Hemidiscus cuneiformis Wallich Roperia tesselata (Roper) Grunow Order Hemiaulales Family Hemiaulaceae Eucampia antarctica (Castracane) Mangin Order Naviculales Family Plagiotropidaceae Tropidoneis group Family Naviculaceae Navicula directa (Smith) Ralfs Family Pleurosigmataceae Pleurosigma sp. Order Rhizosoleniales Family Rhizosoleniaceae Dactyliosolen antarcticus Castracane Rhizosolenia antennata f. semispina Sundstrom Rhizosolenia antennata (Ehrenberg) Brown f. antennata Rhizosolenia cf. costata Gersonde Rhizosolenia polydactyla Castracane f. polydactyla Rhizosolenia simplex Karsten Proboscia alata (Brightwell) Sundstrom Proboscia inermis (Castracane) Jordan Ligowski Order Thalassiosirales Family Thalassiosiraceae Porosira pseudodenticulata (Hustedt) Jouse Thalassiosira ferelineata Hasle et Fryxell Thalassiosira gracilis (Karsten) Hustedt Thalassiosira lentiginosa (Janisch) Fryxell Thalassiosira oestrupii (Ostenfeld) Hasle var. oestrupii Fryxell et Hasle Thalassiosira oliveriana (O'Meara) Makarova et Nikolaev Thalassiosira tumida (Janisch) Hasle Order Thalassionematales Family Thalassionemataceae Thalassionema nitzschioides var. lanceolatum Grunow Thalassiothrix antarctica Schimper ex Karsten Data available: 73 SEM images of the most abundant diatom species found at the three sampling sites. Samples were collected by several sediment traps placed at different depths in the Subantarctic Zone (47 degrees S site), Polar Frontal Zone (54 degrees S site) and Antarctic Zone (61 degrees S site) during the decade 1997-2007. The collection site and date for each species image can be found in Table 1 (see the word document in the download file).

  • These data describe the locations, dates, time, etc where biogeochemistry data were collected on the CEAMARC-CASO cruise in the 2007/2008 Antarctic season. See the CEAMARC-CASO events metadata record for further information. Sample codes are not descriptive. CEMARC/CASO column have underway data (no link to group site) as well as the CEAMARC and CASO sampling locations. Events are recorded by number and the associated type of sample taken. CTD - 0.4 um filtered water sample. Box corer - diatom scrape. Beam Trawl AAD - sponge sample. PHY - phytoplankton sample taken from inline surface seawater system. Van Veen grab - sediment scrape. WAT - surface water sample passed through 0.4 um filter. Description column explains the samples in more detail - eg information on what size fraction the phytoplankton were filtered at. Litres column describes the volume of water that was filtered. Depth is in metres. Time is local time. Temperature is degrees C. Storage location was for shipboard use only. The "other" column details any extra information that may be useful to the sample for example #2153 refers to a sample id code that the French CEAMARC group was using to code for their samples. Our aim for this voyage was to collect surface phytoplankton and water samples across a transect of the Southern Ocean, and to collect benthic sponge and coral samples in Antarctica, to (i) measure the Ge/Si and Si isotope composition to construct a nutrient profile across the Southern Ocean, and to test and calibrate these parameters as proxies for silica utilisation; and (ii) measure the B isotope composition to test the potential of biogenic silica to be used as a seawater pH proxy. We collected phytoplankton, sponges, diatom sediment scrapes and water samples at strategic locations to ensure that the entire water column was surveyed. The data that were collected were used in collaboration with palaeoenvironmental data from sediment cores and experimental culture experiments on diatoms and sponges to gain a better understanding of historical distributions of Silicon and pH in the Southern Ocean.