AMD/AU
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
Metadata record for data from ASAC Project 545 See the link below for public details on this project. From the abstract of the referenced paper: Blood was collected for haematological, red cell enzyme and red cell metabolic intermediate studies from 20 Southern elephant seals Mirounga leonina. Mean haematological values were: haemoglobin (Hb) 22.4 plus or minus 1.4 g/dl, packed cell volume (PCV) 54.2 plus or minus 3.8%, mean cell volume (MCV) 213 plus or minus 5 fl and red cell count (RCC) 2.5 x 10 to power 12 / l. Red cell morphology was unremarkable. Most of the red cell enzymes showed low activity in comparison with human red cells. Haemoglobin electrophoresis showed a typical pinniped pattern, ie two major components. Total leucocyte counts, platelet counts, and coagulation studies were within expected mammalian limits. Eosinophil counts varied from 0.5 x 10 to power 9 / l (5%-49%), and there was a very wide variation in erythrocyte sedimentation rates, from 3 to 60mm/h.
-
Metadata record for data from ASAC Project 1119 See the link below for public details on this project. A marked bend in the Hawaiian-Emperor seamount chain supposedly resulted from a recent major reorganization of the plate-mantle system there 50 million years ago. Although alternative mantle-driven and plate-shifting hypotheses have been proposed, no contemporaneous circum-Pacific plate events have been identified. We report reconstructions for Australia and Antarctica that reveal a major plate reorganization between 50 and 53 million years ago. Revised Pacific Ocean sea-floor reconstructions suggest that subduction of the Pacific-Izanagi spreading ridge and subsequent Marianas/Tonga-Kermadec subduction initiation may have been the ultimate causes of these events. Thus, these plate reconstructions solve long-standing continental fit problems and improve constraints on the motion between East and West Antarctica and global plate circuit closure.
-
A geomorphology map of the Australasian seafloor was created as a Geographic Information System layer for the study described in Torres, Leigh G., et al. "From exploitation to conservation: habitat models using whaling data predict distribution patterns and threat exposure of an endangered whale." Diversity and Distributions 19.9 (2013): 1138-1152. The geomorphology map was generated using parameters derived from the General Bathymetric Chart of the World (GEBCO 2008, http://www.gebco.net/), with 30 arc-second grid resolution. Geomorphology features were delineated manually with a consistent spatial resolution. Each feature was assigned a primary attribute of depth zone and a secondary attribute of morphological feature. The following feature classes are defined: shelf, slope, rise, plain, valley, trench, trough, basin, hills(s), mountains(s), ridges(s), plateau, seamount. Further information (methods, definitions and an illustration of the geomorphology map) is provided in Appendix S2 of the paper which is available for download (see related URLs).
-
During the ADBEX III voyage, many samples were taken of the sea ice and snow. These samples were analysed to determine water density, with the results recorded in a physical note book that is archived at the Australian Antarctic Division. Logbook(s): - Glaciology ADBEX III Water Density Results - Glaciology ADBEX III Oxygen Isotope Sample Record
-
Metadata record for data from ASAC Project 668 See the link below for public details on this project. From the abstracts of some of the referenced papers: Body shrinkage may be one of the strategies that Antarctic krill use to cope with food scarcity, particularly during winter. Despite their demonstrated ability to shrink, there are only very limited data to determine how commonly shrinkage occurs in the wild. It has been previously shown that laboratory-shrunk krill tend to conserve the shape of the eye. This study examined whether the relationship between the eye diameter and body length could be used to detect whether krill had been shrinking. By tracking individuals over time and examining specimens sampled as groups, it was demonstrated that fed and starved krill are distinguishable by the relationship between the eye diameter and body length. The eye diameter of well-fed krill continued to increase as overall length increased. This created a distinction between fed and starved krill, while no separation was detected in terms of the body length to weight relationship. Eye growth of krill re-commenced with re-growth of krill following shrinkage although there was some time lag. It would take approximately 2 moult cycles of shrinkage at modest rates to significantly change the eye diameter to body length relationship between normal and shrunk krill. If krill starve for a prolonged period in the wild, and hence shrink, the eye diameter to body length relationship should be able to indicate this. This would be particularly noticeable at the end of winter. A series of experiments was carried out to examine the relationship between feeding, moulting, and fluoride content in Antarctic krill (Euphausia superba). Starvation increased the intermolt period in krill, but had no effect on the fluoride concentration of the moults produced. Addition of excess fluoride to the sea water had no direct effect on the intermoult period, the moult weight, or moult size. Additions of 6 micrograms per litre and 10 micrograms per litre fluoride raised the fluoride concentrations of the moults produced and the whole animals. The whole body fluoride content varied cyclically during the moult cycle, reaching a peak 6 days following ecdysis. Fluoride loss at ecdysis could largely be explained by the amount of this ion shed in the moult.
-
Overview The aim of this project was to investigate the genetic connectivity and diversity of Antarctic benthic amphipods over fine (100's of m's), intermediate (10's of km's) and large (1000's of km's) scales, using highly variable molecular markers. To achieve this, we developed seven microsatellite markers specific to the common Antarctic amphipod species Orchomenella franklini. A total of 718 specimens of O. franklini were collected from East Antarctica. Approximately 30 specimens were collected from each site, and sites were spatially hierarchically nested - i.e. sites (separated by 100m) were nested within locations (separated by 1-30km), which were nested within 2 broad regions (separated by approx. 1400km). Each amphipod sample was genotyped for all seven microsatellite loci (although occasionally a locus would not amplify in a given sample). This dataset provides all the resultant genetic data - that is, the size of the two alleles that were amplified for each microsatellite locus, in each of 718 amphipod specimens. Data collection and analysis Please refer to the associated publication (see below) for all relevant methodology. Explanation of worksheet Sample ID- a unique code given to identify each amphipod sample (the code itself has no actual meaning). Region- the broad region of the Antarctic coast from which each sample was collected. The two regions (Casey and Davis station) are separated by approx. 1400km. Location- the locations (within a region) from which each sample was collected. The names of each location reflect actual names registered by the Australian Antarctic Division and therefore their coordinates can be pinpointed on maps held by the Australian Antarctic Division Data Centre. Locations (and corresponding sites) written in italicised typeface are considered polluted (see publication for more information on this classification). Site- the sites sampled within each location. Sites are named simply by a two -letter abbreviation of the location they are from, followed by a lowercase 'a', 'b', 'c' or 'd' representing site 1, 2, 3 etc. Microsatellite data - this provides all the microsatellite genetic data generated for each amphipod specimen. Data are presented as the allele sizes (in number of base pairs) recorded for each of the seven microsatellite loci amplified. The seven microsatellite loci are called Orcfra3, Orcfra4, Orcfra5, Orcfra6, Orcfra12, Orcfra13, Orcfra26. As O. franklini is a diploid organism, each microsatellite locus has two allele sizes (hence why there are two columns underneath each locus). A '0' signifies that a particular locus did not amplify successfully in the corresponding organism (after at least two attempts). Samples were collected from Casey station between January 2009 and March 2009, and from Davis station between November 2009 and April 2010. Genetic data was generated and analysed between April 2009 and November 2009, and between May 2010 and April 2011. Genetic data obtained from the common Antarctic amphipod species Orchomenella franklini - Genetic data obtained from the common Antarctic amphipod species Orchomenella franklini. A total of 718 specimens were collected from sites within 20 km of Casey station or Davis station. Collection dates ranged from 2009 to 2010. Each amphipod sample was genotyped for seven microsatellite loci (although occasionally a locus would not amplify in a given sample).
-
This terrestrial dataset was collected at Ursula Harris’s behest by Craig Hamilton and a Naval Survey team on 09 January 2018 when sea conditions prevented the team from taking bathymetric measurements. This survey was intended to fill gaps in the existing Mawson Station survey data and includes 29 previously unrecorded features comprised of bollards, HF towers, flagpoles, masts, antennae, ionosonde transmitter and receiver, the Mawson Signpost and the Douglas Mawson Bust.
-
The RAN Australian Hydrographic Service conducted hydrographic survey HI176 at Macquarie Island in December 1993. The main survey area was adjacent to the north-east coast between North Head and The Nuggets. Survey lines were also followed part way down the west coast of the island and in the vicinity of Judge and Clerk Islets and Bishop and Clerk Islets. The survey dataset, which includes metadata, was provided to the Australian Antarctic Data Centre by the Australian Hydrographic Office and is available for download from a Related URL in this metadata record. The survey was lead by LT A.J.Withers. The data are not suitable for navigation.
-
Bathymetric contours and height range polygons of approaches to Mawson Station, derived from RAN Fair sheet, Aurora Australis and GEBCO soundings.
-
Bathymetric Contours and height range polygons of approaches to Davis Station, derived from RAN Fair sheet, Aurora Australis and GEBCO soundings.