Sulfur isotope patterns of oceanic crust on Macquarie Island-implications for global sulfur cycling G
Metadata record for data from ASAC Project 2212 See the link below for public details on this project.
From the abstracts of two of the references:
----------
Ocean Drilling Program hole 504B revealed an ocean crust hydrothermal sulphur anomaly on the dyke-lava transition, with implications for global sulphur sinks. Here we confirm the presence of the anomaly sporadically along 7.5km of dyke-basalt contact on the Macquarie Ridge at Macquarie Island, a 39-9.7 Ma slow-spreading setting. Background contact-zone pyrite S contents average 1845 ppm across ~50 m. However zones of small-scale brittle faulting that commonly occur on and above the dyke-basalt contact average between 5000 and 11000 ppm S (20-30 m widths). These consist of steep ridge-parallel faults and fault splays on the contact, overlain by up to 50m of linked pyritic fault trellis. The contact zone faults are haloed by disseminated pyrite-chlorite, cross-cut by quartz-chlorite-sphalerite and epidote-cemented breccias, containing evidence of turbulent flow. The structural control on sulphur deposition is attributed to the active extensional slow spreading setting. With increasing extension, diffuse mixing across the contact was replaced by channelised flow and dynamic mixing in fault arrays. The magnitude of the dyke-lava transition sulphur sink must be reassessed to take account of this heterogeneity.
----------
There are only a handful of known hydrothermal sulfate occurrences from the mid-ocean ridge crust sub-surface, despite predictions that they should be common because of the imbalance between sulfur concentrations in venting MOR hotsprings, and that of recharging seawater. This deficit indicates that sub-surface sulfate deposition could be a globally important sulfur cycle sink. Therefore any new occurrences add considerably to the information base on sulfate in this environment.
An important hydrothermal sulfate occurrence is preserved in ~10 Ma MOR crust on the east coast of Macquarie Island, formed during very slow oblique spreading prior to transition to a magmatic strike-slip plate boundary. The sulfate occurs mainly as white gypsum veins and breccia cement associated with a major fault zone 400m south of Nuggets Point. The site is in the amphibolite facies sheeted dyke and gabbro screen hanging wall of a major northwest-trending graben, itself filled with sub-ziolite facies basaltic breccias and lava flows.
The sulfate veins occur as several 2-5m wide vein complexes, with surrounding vein networks over several hundred metres. Veins are strongly associated with oblique-sinistral jogs on a N to NNE-trending fault zone, here termed the Nuggets fault. This fault is intruded by thin, weakly metamorphosed, vesicular sheeted dykes (forming a greater than 30m wide zone) interpreted to have developed contemporaneously with the nearby graben, Gypsum is mainly in the amphibolite facies rocks and the younger dykes, but also occurs as thin gape-fill in dykes of the younger volcanic graben. These field relations indicte that the sulfate veins were emplaced contemporaneously with graben formation and infill, approximately 200m below the sea floor. The host fault zone is contiguous with mapped graben offsets, and is interpreted as an oblique transfer fault.
Secondary epidote and quartz-chalcopyrite veining, together with subsequent chlorite-pyrite alteration, predate sulfate, and suggest early hydrothermal upflow conditions. These are cut by vein complexes which display anhydrite relics within foliated gypsum plus or minus pyrite veins surrounded by marginal vein networks of zeolite-gypsum-calcite. These assemblages require central temperatures of greater than 150 degrees C, with a rapid gradation in outer veins to cooler conditions, perhaps less than 100 degrees C. These features imply general cooler recharge conditions; our previous work has shown that this involved a complex history of sub-surface microbial interaction. These field and mineralogical relations provide one predictive tectonic context for the deposition and style of hydrothermal sulfate in extending MOR crust. Sulfate fluid is strongly fault channeled, and rather than occurring in graben boundary faults, deposits precipitates preferentially in transfer faults under-going limited magmatic activity on the graben edge.
A description of the fields in this dataset:
m from start: metres measured over the ground between sample points.
Easting mE, and Northing mE: estimated position relative to the AMG grid used in the 1;10000 mapping series, Mineral Resources Tasmania, using a horizontal datum of WGS 1984. Map date of production, August 1997.
Simple
Identification info
- Alternate title
- Sulfur isotope patterns of oceanic crust on Macquarie Island-implications for global sulfur cycling G
- Date (Publication)
- 2005-05-31
- Edition
- 1
- Citation identifier
-
Dataset DOI
- Title
- Information and documentation - Digital object identifier system
- Date (Publication)
- 2012-04-23
- Citation identifier
- ISO 26324:2012
- Citation identifier
- doi:10.4225/15/5747D1A4B4706
Originator
Publisher
Principal investigator
Collaborator
- Name
- CAASM Metadata
- Purpose
- S (sulfur isotopes) Bulk pyrite done: ie a wholerock sulfur isotope extraction was carried out. Sample wt: sample weight in g of powder aliquot used for wholerock sulfur isotope extraction. S+dish+filt: Weight of processed sample product plus the sample dish and S+dish+the extracting filter (g) dish corrn: a small weight correction required to account for water adhesion to the sample dish when removed from the dessicator. Ag2S: final weight in g of precipitated sulfide product, prior to isotopic determination. py-S ppm: calculated concentration of pyrite (or any disulfide) S in the wholerock sample, determined by gravimetric means. mono S ppm: calculated concentration of monosulfide S in the wholerock sample, determined by gravimetric means. dish (SO4): Weight of sample dish and sample for the sulfate S extraction step. SO4 g: weight of barite precipitate produced during a wholerock extraction. XRF geochem: identifies samples that also have wholerock chemistry by XRF (previously supplied metadata). MAG. SUSC.: Magnetic susceptibility of the original unprocessed sample in units of SI x 10-5E
- Status
- Completed
Custodian
- Topic category
-
- Geoscientific information
- Oceans
Extent
Extent
- Description
- Temporal Coverage
Temporal extent
- TimePeriod
- 1997-09-01 1998-03-31
- Title
- Enriched end-member of primitive MORB melts: petrology and geochemistry of glasses from Macquarie Island (SW Pacific)
- Date (Publication)
- 2000
- Citation identifier
- 41
Author
- Name
- Journal of Petrology
- Page
- 411-430
- Title
- Macquarie Island: its geology and structural history, and the timing and tectonic setting of its N-MORB to E-MORB magmatism.
- Date (Publication)
- 2000
- Citation identifier
- 349
Author
- Name
- Geological Society of America, Special Publication
- Page
- 301-320
- Other citation details
- Dilek Y., Moores E., Elthon D. and, Nicolas A. Ophiolites and oceanic crust: new insights from field studies and the Ocean Drilling Program
- Title
- Structural controls on sulphide deposition at the dyke-lava boundary, slow-spreading ocean crust, Macquarie Island
- Date (Publication)
- 2003
- Citation identifier
- 16
Author
- Name
- Terra Nova
- Issue identification
- 1
- Page
- 9-15
- Title
- The ocean crust dike/basalt hydrothermal sulfur anomaly-insights into its growth and geometry during crustal extension on Macquarie Island
- Date (Publication)
- 2000
- Citation identifier
- 59
Author
- Name
- Australian Geological Society Abstracts
- Page
- 117
- Title
- Hydrothermal sulfate precipitation in an oceanic crust transfer fault: Macquarie Island, Southern Ocean
- Date (Publication)
- 2004
- Citation identifier
- 73
Author
Publisher
- Name
- Dynamic Earth: Past, Present and Future. 17th Australian Geological Convention
- Page
- 203
- Other citation details
- 8-13 February 2004
- NASA/GCMD Earth Science Keywords
-
- EARTH SCIENCE > SOLID EARTH > GEOCHEMISTRY > GEOCHEMICAL PROPERTIES > ISOTOPES
- Keywords
-
- Sulfur isotope
- Sulfur cycling
- Oceanic crust
- NASA/GCMD Earth Science Keywords
-
- AMD/AU
- CEOS
- AMD
- NASA/GCMD Earth Science Keywords
-
- OCEAN > SOUTHERN OCEAN
- OCEAN > SOUTHERN OCEAN > MACQUARIE ISLAND
- GEOGRAPHIC REGION > POLAR
Resource constraints
- Use limitation
- This metadata record is publicly available.
Resource constraints
- Access constraints
- licence
- Other constraints
- These data are available for download from the URL given below.
Resource constraints
- File type
- Portable Network Graphic
- Title
- Attribution 4.0 International (CC BY 4.0)
- Website
-
https://creativecommons.org/licenses/by/4.0/legalcode
Legal code for Creative Commons by Attribution 4.0 International license
- Use constraints
- licence
- Other constraints
- This data set conforms to the CCBY Attribution License (http://creativecommons.org/licenses/by/4.0/). Please follow instructions listed in the citation reference provided at http://data.aad.gov.au/aadc/metadata/citation.cfm?entry_id=ASAC_2212 when using these data.
- Language
- English
- Character encoding
- UTF8
Distribution Information
Distributor
Distributor
Distributor
- Fees
- free
- Planned available datetime
- 2005-05-31T00:00:00
- Units of distribution
- kb
- Transfer size
- 21
- Distribution format
-
- excel
- OnLine resource
-
GET DATA
Download point for the data - Excel spreadsheets
- OnLine resource
-
PROJECT HOME PAGE
Public information for ASAC project 2212
- OnLine resource
-
VIEW RELATED INFORMATION
Citation reference for this metadata record and dataset
Resource lineage
- Statement
- Dates provided in temporal coverage are approximate only. Years are correct.
- Hierarchy level
- Dataset
- Maintenance and update frequency
- As needed
- Maintenance note
- 2016-03-16 - record updated by Dave Connell - basic updates.
Metadata
- Metadata identifier
- string/ASAC_2212
- Language
- English
- Character encoding
- UTF8
Author
Sponsor
Owner
Type of resource
- Resource scope
- Dataset
Alternative metadata reference
- Title
- gov.nasa.gsfc.gcmd
- Citation identifier
- 3a3557f0-dc31-42da-9d4b-c63cc88211c0
Alternative metadata reference
- Title
- gov.nasa.gsfc.gcmd
- Date (Last Revision)
- 2015-11-30T04:51:18
Identifier
- Description
- metadata.extraction_date
Alternative metadata reference
- Title
- gov.nasa.gsfc.gcmd
- Citation identifier
- 8.6
- Metadata linkage
-
http://data.aad.gov.au/metadata/records/ASAC_2212
Point of truth for the metadata record
- Date info (Creation)
- 2000-08-15T00:00:00
- Date info (Last Update)
- 2017-04-26
Metadata standard
- Title
- ISO 19115-3
- Edition
- 2014
- Other citation details
- Version 1
- Title
- DIF to ISO 19115-1 Profile