EARTH SCIENCE > OCEANS > SEA ICE
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
Handdrawn maps plotting the ships position over time, with notes recording the sea ice and icebergs observed for each plotted point. Also includes sketches of the ice edge and some fast ice positions for the area around where the ship was travelling. The maps are archived at the Australian Antarctic Division.
-
Observations of the sea ice cover at Wilkes base in Autumn-Winter 1963. Includes water temperature, air temperature, wind speed and direction, cloud cover, relative humidity, and general notes. These documents have been archived at the Australian Antarctic Division.
-
Data were collected during deployments of an instrumented Remotely Operated Vehicle on 5 sampling days to determine sea ice physical properties and measure transmitted under-ice radiance spectra (combined with surface irradiance measurements) to estimate the spatial distribution and temporal development of ice algal biomass in land-fast sea ice. The ROV was instrumented with a navigation/positioning system (linked to surface GPS), upward-looking sonar and accurate depth sensor (Valeport 500 (to determine sea-ice draft)), and a upward-looking TriOS Ramses radiance sensor as well as several video-cameras collecting under-ice footage. Parallel measurements included surface irradiance measurements. A readme file in the download explains the folder structure of the dataset.
-
A Langrangian free drift model is developed, including a term for geostrophic currents that reproduces the 13 h period signature in the ice motion observed in the data (CLSC_WIIOS_2017; parent data). The calibrated model is shown to provide accurate predictions of the ice drift for up to 2 days, and the calibrated parameters provide estimates of wind and ocean drag for pancake floes under storm conditions. Model setup is described in "Drift of pancake ice floes in the winter Antarctic marginal ice zone during polar cyclones", Alberello et. al [https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JC015418; pre-print https://arxiv.org/pdf/1906.10839.pdf]. The dataset includes model data. Six model outputs are included. (i) "full_t00" includes the full 10 days simulation, with all the forcing switched on (ii) "noge_t00" includes the full 10 days simulation, but the geostrophic current is suppressed (iii) "full_t25_noup" includes the simulation with start at 2.5 days, all the forcing switched on, no update of the drag coefficients (iv) "full_t25_newn" includes the simulation with start at 2.5 days, all the forcing switched on, the drag coefficients are recalibrated (v) "full_t50_noup" includes the simulation with start at 5 days, all the forcing switched on, no update of the drag coefficients (vi) "full_t50_newn" includes the simulation with start at 5 days, all the forcing switched on, the drag coefficients are recalibrated In each file: - rho_a the air density (1.3 kg/m3) - rho_w the water density (1028 kg/m3) - rho_i the ice density (910kg/m3) - C_w the water drag coefficient (calibrated) - C_a the air drag coefficient (calibrated) - turn the turning angle (25 degrees) - Nansen the Nansen number evaluated using C_a and C_w - aalpha a model parameter (proportional to air and ice parameters) - abeta a model parameter (proportional to water and ice parameters) - ag amplitude of the geostrophic current (U_g=0.125m/s) - tg initial phase of the geostrophic current (in radians) - to start time (in matlab format, use "datestr(to)" ), after which model resolution is 60 seconds - wo components of wind in the East and North direction (m/s) - wi components of wind in the East and North direction (m/s) - uo components of modelled ice drift speed in the East and North direction (m/s) - lo longitude and latitude of modelled ice position (degrees) - xo position of modelled ice in the East and North direction (m), given with respect to the initial position (0,0) - wco components in the East and North direction of geostrophic current (m/s)
-
Chlorophyll data was used to measure growth rates of sea ice algae in CO2 incubations. Sea ice brine microalgae was collected from sackholes. Replicate samples were incubated in ambient air (~0.04% CO2), 0.1% CO2, 1.0% CO2 and 2.0% CO2 concentrations. AT the end of the incubations the 50 ml samples were filtered through a 25 mm GF/F filter using vacuum filtration. The filters were placed in 15 ml plastic falcon tubes containing 10 ml of methanol, covered in aluminium foil and kept in the dark at 4 degrees C for 12 hours. Chl a concentration was measured using a 10AU Turner fluorometer following the acidification method of Strickland and Parsons (1972). Data in spread sheet shows the extracted chl + phaeophytin, phaeophytin and chlorophyll concentrations (micro grams l-1) for each of the three experiments. Data were collected at SIPEX Ice Stations 1-8 and SIPEX CTD stations 2-5
-
Metadata record for data expected from ASAC Project 2767 See the link below for public details on this project. A multidisciplinary survey of the processes linking sea ice with biological elements of Antarctic marine ecosystems was conducted in winter 2007. The survey provided large-scale information on sea ice biological and physical parameters in the 100-130 degree East sector off East Antarctica. The distribution of sea ice algae and krill were measured using various methods including ice coring surveys and trawls. These measurements were complemented by shipborne measurements and an intensive sea ice sampling program. Use of an ROV was attempted but did not result in quantitative/geo-referenced data. Under-ice video files are available from the Chief-Investigator. Individual word documents are available from this metadata record for each ice station. These contain information on the ice station number, date and time of record and the parameters/ samples.
-
Fast repetition rate fluorometer (FRRF) study of sea ice algae in low iron conditions. Algae were grown in an ice tank and the measurements were made at the end with a Chelsea Insrtuments FRRF. Materials and Methods (see the download document for original formatting and formulas) 1. Ice tank incubation The polar pennate diatom Fragilariopsis cylindrus, isolated from Antarctic pack ice in 2015 (Davis station, East Antarctica) was incubated in a purpose designed ice tank (Island Research, Tasmania). The ice tank, which was contructed of titanium to minimise dissolved Fe, was placed into a freezer (–20 degrees C), and the ice thickness and temperature gradient controlled by interaction between a basal heater and the adjustable ambient freezer temperature (see Kennedy et al., 2012). This enabled an ice thickness of approximately 5.5 cm to be maintained during the experiment. The diatom F. cylindrus was incubated in Aquil media (Price et al. 1989) buffered with ethylenediaminetetraacetic acid (EDTA) at 150 micro mol photons m−2 s−1 (PAR), a salinity of 35, and a Fe concentration of 400 nM, where the concentration of total inorganic forms of Fe (Fe') was 1.54 nM, this being continuously supplied to the medium and the exact value calculated using the software Visual MINTEQ, ver. 3.1 (https://vminteq.lwr.kth.se). Before a freezing cycle started, the seawater temperature was maintained at 2.5 degrees C, and a sample was obtained to assess the original physiological state of the algae (Day−5, hereafter). After obtaining the sample, the seawater temperature was set to −1.8 degrees C to initiate ice formation in the ice tank. Once ice had formed at Day−2, the under-ice seawater was partially replaced with ultrapure water to reduce the salinity down to 35, because the salinity had increased (to approximately 38) as a result of brine rejection from the ice. After a 2-day acclimation to the new salinity, ice samples were obtained every 5 days for 20 days (i.e., Days 0, 5, 10, 15, and 20). To minimize the heterogeneity among ice cores, ice samples were randomly collected from the tank chamber with a trace metal-free hand drill (2 cm in diameter) from randomly annotated grids on the ice surface, following normal random sampling numbers generated by the software R (https://www.r-project.org/). To assess the effects of melting and high light exposure, the ice was melted at 2.5 degrees C for 2 days. After the ice had completely melted, the seawater was exposed to a high light level, which was adjusted to represent the likely summer light intensity at the surface in ice-edge regions (800 micro mol photons m−2 s−1; MODIS Aqua), Seawater samples were obtained both after the melting and light exposure events (Melt and Light, respectively, hereafter). 2. Fast repetition rate (FRR) fluorometry To monitor the photophysiology of F. cylindrus during the freezing and melting processes, variable chlorophyll a fluorescence (ChlF) measurements were conducted using a bench-top Fast Repetition Rate fluorometer (FRRf) (FastOcean Act2Run Systems, Chelsea Technologies) with Act2Run software (Chelsea Technologies). Ice samples were directly thawed at 2 degrees C in the dark for 30 min, and the slushily melted ice samples were placed in a quartz tube and their flouresence (ChlF) was measured. A single turnover protocol was applied for the ChlF measurements; 100 flashlets with 1 micro second duration at a wavelength 450 nm and 2 micro second intervals for excitation of reaction centres of photosystem II (PSII, hereafter), and 20 flahlets with 1 μs duration and 100 micro second intervals for relaxation. Eighteen light steps were applied to generate a rapid light curve (RLC) from 0 to 1800 μmol photons m−2 s−1, taking less than 5 min to complete one RLC. At each light step (~15 s), at least five induction and relaxation curves were averaged to obtain ChlF yields, described in Table, after calibrating the ChlF yields with filtered seawater. According to the models proposed by Kolber et al. (1998), photosynthetic parameters of chlorophyll a (chl a) induction and relaxation curves were calculated based on the ChlF yields as shown in Table. Electron transport rate though the reaction centres of PSII (RCII) (ETRRCII) was calculated as per the equation detailed in the download document.
-
Between 1954 and 1975, iceberg observations were collected on Australian National Antarctic Research Expeditions (ANARE) by Antarctic expeditioners on a volunteer basis as they travelled to and from Antarctica. No fixed format for data collection had been determined, and many of the observations recorded are in diary format. The data have not been converted to electronic form, and are available only in the original logbooks held at the National Archives Office.
-
Metadata record for data from AAS (ASAC) project 2944. Public Sea ice and tides are important factors affecting ocean-atmosphere heat transfer and deep water formation. They affect climate and the global thermohaline circulation. Generally, tidal processes were ignored in coupled sea ice/ocean models and sea ice was ignored in tidal models. Here, a coupled sea ice/ocean model is used to evaluate tidal effects on sea ice and deep water formation in the continental margin off Wilkes Land. The model results will both support and be verified against results from an observational sea ice program. The project will also investigate the effects of warming of circumpolar deep water on sea ice. Project objectives: 1. a quantitative evaluation of the tidal effects, including those of internal tides, on the sea ice concentration and thickness, lead formation, ocean-atmosphere heat flux, and deep water formation 2. generation of estimates of sea ice and tidal velocity fields in support of AAS 2901 3. validation of an established coupled ocean/sea ice model in realistic scenarios 4. simulation of the effects of warming of the Circumpolar Deep Water on sea ice concentrations and tidal effects on the sea ice Taken from the 2008-2009 Progress Report: 1.This year it was necessary to update the model I use, ROMS, since significant changes had been made by the model development committee. It required considerable work to implement my changes into the new model and test it. Subsequently, simulations of internal tides were again performed for the region off Wilkes Land. 2-4. Limited progress. Taken from the 2009-2010 Progress Report: I am investigating the role of tides on the cryosphere, specifically sea ice and ice shelves, focussing on the Pine Island Glacier in the Amundsen Sea and the Wilkes Land region of the Antarctic. Both modeling and observational data are being used. This year I simulated tides for the region and analysed observational data to identify the role of tides and to verify the model.
-
Described fully in (https://doi.org/10.21203/rs.3.rs-636839/v1 holder). Data The main CEL method, and a subsidiary Coastal Exposure Index or CEI (both described below), are based on daily sea-ice concentration products for the period 1979 through 2020. These products are derived from the multi-satellite passive-microwave brightness temperature time series using the NASA Team algorithm, mapped at 25 km x 25 km resolution and obtained from the NASA National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC). Both algorithms are designed to be adaptable for different resolution data. Complete coverage of the entire Antarctic coastal and sea-ice zones is obtained on a daily basis, except for 1979-July 1987 (once every two days). Missing single days during this period are interpolated from the adjoining day's sea-ice concentration values. Averages and climatologies are based on the period 1979-2020, unless otherwise stated. The continental land mask used (gsfc_25s.msk) is also obtained from NSIDC, and includes ice shelves (the seaward extremities of which are taken here to be coastline). Coastline grid points are defined from the continental land mask as any ocean grid point that has land/ice sheet adjacent to it. Analysis methods For this study, we developed two new but different algorithms for quantifying and monitoring Antarctic coastal exposure: the Coastal Exposure Index (CEI) and Coastal Exposure Length (CEL) method. The CEI technique is based on the detection of sea ice presence/absence radially out (northwards) from the coastline along each meridian (at one degree longitudinal spacing), following masking of the ice sheet. The CEI is simply defined as the number of longitudes with no sea ice (threshold set to less than 15% following convention) to the north of the continent, and hence runs from zero to 360. This methodology is trivial and code for this is not included. CEL is defined as the length (in kms) of the Antarctic coastal perimeter with no adjacent sea ice anywhere offshore (i.e. total exposure of the coast to the open Southern Ocean with no intervening sea ice), but excluding coastal polynyas. By this method, we use the land mask to determine if each coastal grid point has an immediately-adjacent ocean grid point that is ice-free (i.e. has a sea-ice concentration of less than 15%). If this criterion is met, then a nearest (adjoining) neighbour-testing technique is used to determine whether that ocean grid point is exposed in some way to the wider open ocean or is bound by neighbouring sea ice offshore. If any of the neighbouring grid points are classified as “exposed”, or if the total area of neighbouring ice-free grid points exceeds an arbitrary cut-off of 500,000 km2, then that coastal grid point is classified as “exposed”. Otherwise, the grid point and all sea-ice-free neighbouring grid points are deemed to be bounded by sea ice and are classified as a coastal polynya. The length of individual exposed coastal grid points is estimated by taking the square root of the respective pixel area. The length of coastal exposure, either regionally or net circum-Antarctic, is then simply the sum of the length of exposed coastal grid points. The IDL code used for calculating CEL is included here.