Keyword

EARTH SCIENCE > HUMAN DIMENSIONS > ENVIRONMENTAL IMPACTS > HEAVY METALS CONCENTRATION

26 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 26
  • Metadata record for data from ASAC Project 2385 See the link below for public details on this project. ---- Public Summary from Project ---- Facilities for chemical analysis of environmental samples in Antarctica are limited, with samples frequently shipped at great expense to Australia for analysis. Development of a technique to concentrate metals from environmental samples into a thin film which can be easily transported to a laboratory for analysis is currently underway. DGT stands for Diffusive gradients in thin films, they are a passive sampling technique for trace metals based on Fick's First Law of diffusion. Basically the theory being the method: Zhang, H. and Davison, W., Anal Chem, 1995, 67, 3391-400 and Davison, W. and Zhang, H., Nature (London), 1994, 367, 546-8. Description of spreadsheets: All data were collected using DGT sediment probes or water samplers prepared from polyacrylamide diffusion layer (0.8 mm thickness, covered with a 0.13 mm thick membrane filter) and Chelex 100 binding layer (0.4 mm thick). Metadata 0304 sediment - DGT sediment probes were deployed during the 0304 summer. Samples were deployed in a 3 x 2 back-to-back array at the inner and outer sites in Brown and O'Brien Bay. ie 1.1 and 1.2 are back to back pair. All samplers were deployed for 34 days. More accurate date are on the attached s'sheet. Results shown are nanograms of metals per square centimetre accumulated in the samplers at a resolution of 2 cm. The detection limits of the metals for the samplers are based on 3 x stdev of the field blank probes. Where value = &nd& the value was less than the method detection limit. Metadata 0304 sediment Characterisation - Cores were sampled in Dec 2003 - Jan 2004 from Casey Station region. All characterisation was performed on the same 1 cm slices of core. Cores were sampled and analysed in anoxic conditions. Latitudes and Longitudess Brown Bay inner66.2803 S, 110.5414 E Brown Bay outer66.2802 S, 110.5451 E O'Brien Bay inner66.3122 S, 110.5147 E O'Brien Bay outer66.3113 S, 110.5162 E Metadata 0203 sediment - Results shown are sediment profile in nanograms of metals per square centimetre accumulated in the samplers at a resolution of 1 m. Samples 1.x were deployed for 5 days before the summer melt, 2.x were deployed for 10 days before the melt, 3.x were deployed for 15 days before the melt, 4.x were deployed for 21 days before the melt, 5.x were deployed for 28 days before the melt, 6.x were deployed for 5 days during the melt and 7.x were deployed for 20 days during the melt. The detection limits of the metals for the samplers are based on 3 x stdev of the field blank probes. Where value = 'nd' the value was less than the method detection limit. Metadata 0304 water - Results show metals in DGT water samplers deployed for 28 days. Actual times are on spreadsheet attached. Samplers were deployed in triplicate at three depths in the water column, with the depth from the sed bed meaning metres above the sea bed in the water column. Values in the original spreadsheet is nanograms of metals accumulated in sampler of 3.14cm2 area. The detection limits of the metals for the samplers are based on 3 x stdev of the field blank. Where value = 'nd' the value was less than the method detection limit. Metadata 0203 water - Results show metals in DGT water samplers deployed for 8 days. Samplers were deployed in triplicate at three depths in the water column. Depth from seabed is a measure of distance from the sea bed to the deployment depth in the water column. Values in the original spreadsheet is nanograms of metals accumulated in sampler of 3.14cm2 area. The detection limits of the metals for the samplers are based on 3 x stdev of the field blank. Where value = 'nd' the value was less than the method detection limit. ---- One thing to note, although the metal isotopes are listed, ie Cd111(LR), this is still a measure of the elemental Cd (ie all isotopes), it is just how the ICP-MS analyst presents the data when I get the raw data back. I probably should have corrected this by remove the number to remove any ambiguity involved. A pdf file of supplementary figures created from the raw data are also included as a download file. Explanations of the figures are presented below. Supplementary Data Figure Captions Figure S1. 2002 - 03 DGT water sampling results for Cd, Fe and Ni, before the melt (upper) and during the melt (lower). BB Brown Bay, OBB O'Brien Bay, top top depth, mid middle depth, bot bottom depth. Error bars represent minimum and maximum values based on three replicates and horizontal line is the detection limit based on 3s Figure S2. 2002 - 03 DGT uptake results for Mn, Fe and As in Brown Bay (upper) and O'Brien Bay (lower) for various deployment times Figure S3. 2003 - 04 DGT sediment probes results for Brown Bay outer. Upper axis represents maximum porewater concentration assuming no resupply; symbols are for 6 replicate DGT probes. Detection limit, based on 3s is represented by vertical line Figure S4. 2003 - 04 DGT sediment probes results for O'Brien Bay inner. Upper axis represents maximum porewater concentration assuming no resupply; symbols are for 6 replicate DGT probes. Detection limit, based on 3s is represented by vertical line Figure S5. 2003 - 04 DGT sediment probes results for O'Brien Bay outer. Upper axis represents maximum porewater concentration assuming no resupply; symbols are for 6 replicate DGT probes. Detection limit, based on 3s is represented by vertical line Figure S6. Sediment porewater concentrations from replicate Brown Bay outer cores Figure S7. Sediment porewater concentrations for O'Brien Bay inner (open circles) and outer (closed circles)

  • The concentration of heavy metals in seawater at four sites around Casey was determined via Diffusive Gradients in Thin films (DGT) loggers attached to experimental mesocosms suspended below the sea ice. Data are the concentration of heavy metals in micrograms per litre (ug/l), equivalent to parts per billion (ppb)/litre Two loggers were attached to each mesocosm (perforated 20 litre food buckets) at each site; one at the top and one at the bottom of each mesocosm. Mesocosms were suspended two to three metres below the bottom edge of the sea ice through a 1 metre diameter hole and were periodically raised to the surface for short periods (~1 hour). This experiment was part of the short-term biomonitoring program for the Thala Valley Tip Clean-up at Casey during summer 2003/04. During Runs 1 and 2 of the experiment mesocosms were deployed at Brown Bay Inner (S66 16.811 E110 32.475), Brown Bay Outer (S66 16.811 E110 32.526), McGrady Cove (S66 16.556 E110 34.392) and O'Brien Bay 1 (S66 18.730 E110 30.810). In Run 3 mesocosm were deployed in open water with no sea ice covering at Brown Bay Inner (S66 16.807 E110 32.556), Brown Bay Outer (S66 16.805 E110 32.607), McGrady Cove (S66 16.520 E110 34.257) and O'Brien Bay (S66 17.607 E110 31.247). These data were collected as part of ASAC project 2201 (ASAC_2201 - Natural variability and human induced change in Antarctic nearshore marine benthic communities). See also other metadata records by Glenn Johnstone for related information.

  • This metadata record contains observed and predicted toxicity data from bioassays with two species of Antarctic marine microalgae: Phaeocystis antarctica (Prymnesiophyceae) and Cryothecomonas armigera (Cercoza). Bioassay exposures were of mixtures of 5 metals at two ratios, an Environmental (ENV) and Equitoxic (EC) mixture. The measured dissolved metal concentrations were used in two mixture reference models, Independent Action (IA) and Concentration Addition (CA), to predict toxicity as population growth rate inhibition. A Flow Cytometer (BD-FACSVerse) was used to measure the density of microalgae over time, which was then converted to a growth rate. An inductively coupled plasma-atomic emission spectrometry (ICP-AES; Varian 730-ES), was used to measure metal concentrations. Data for each microalga is provided in individual excel spreadsheets, identified by the species tested. A word document is provided that contains the R code used to predict toxicity to the two microalgae by the reference models Independent Action and Concentration Addition. The R code also includes the steps required to extend the models to include a deviation parameter “a” that allows for departure from model additivity. A nested F-test then tests for significance between the fit of each test to observed toxicities. This R code has been adapted to use EC10 as parameter estimates, rather than EC50s. The code was adapted from the approach outlined in Hochmuth, J. D.; Asselman, J.; De, S. Are Interactive Effects of Harmful Algal Blooms and Copper Pollution a Concern for Water Quality Management? Water Res. 2014, 60, 41–53. DOI: 10.1016/j.watres.2014.03.041. Single-metal toxicity data and experimental protocols for P. antarctica from the following paper: and C. armigera used in this study can be found in the following papers: A robust bioassay to assess the toxicity of metals to the Antarctic marine microalga Phaeocyctis antarctica. Francesca Gissi, Merrin S. Adams, Catherine K. King, Dianne F. Jolley (2015). Environmental Toxicology and Chemistry. 2015 Feb 20. doi: 10.1002/etc.2949. Chronic toxicity of five metals to the polar marine microalga Cryothecomonas armigera – Application of a new bioassay. Darren J. Koppel, Francesca Gissi, Merrin S. Adams, Catherine K. King, and Dianne F. Jolley, (2017). Environmental Pollution, Volume 228, 2017, Pages 211-221, doi.org/10.1016/j.envpol.2017.05.034.

  • This data describes the cellular metal concentrations of Phaeocystis antarctica and Cryothecomonas armigera following exposure to metals singly and in mixtures in laboratory studies. Microalgae were cultured in 80 mL of filtered (less than 0.45 um) seawater and low concentrations of nutrients supplemented with metal stocks to give a range of single and mixture exposures to the metals cadmium, copper, nickel, lead, and zinc. The cellular accumulation and partitioning are used to explain the metal's toxicity (cellular metal fractions are compared to the toxicity data provided in 10.4225/15/5ae93ff723ff8) and assess the risk bioaccumulation of metals to Antarctic marine microalgae may pose in the Southern Ocean food web.

  • These are the scanned electronic copies of field and lab books used at Casey Station between 1997 and 2012 as part of ASAC (AAS) project 2385 - Development and application of DGT devices for passive sampling of contaminated waters in the Antarctic environment.

  • Study location and species The four species used in this study were collected from subantarctic Macquarie Island (54.6167 degrees S, 158.8500 degrees E), just north of the Antarctic Convergence in the Southern Ocean. Sea temperatures surrounding Macquarie Island are relatively stable throughout the year, with average temperatures ranging from ~4 to 7 degrees C [25]. Collection sites were free from any obvious signs of contamination and did not have elevated concentrations of metals as confirmed by analysis of seawater samples from the collection sites by inductively coupled plasma optical emission spectrometry (ICP-OES; Varian 720-ES). Toxicity tests were conducted at Macquarie Island over the 2013/14 austral summer, and at the Australian Antarctic Division (AAD) in Tasmania, Australia, from 2013 to 2015. The aquarium at the AAD used for culturing and for holding biota prior to their use in tests was maintained at a temperature of 5.8 degrees C under flow-through conditions (at 0.49L/sec). Individuals for toxicity tests on the island and individuals for return to Australia for culturing were collected from a range of habitats within the intertidal and subtidal zones. All species were highly abundant in each of their respective habitats. The gastropod Laevilittorina caliginosa was collected from pools high on the intertidal zone; the flatworm Obrimoposthia ohlini, from the undersides of boulders from the intertidal to shallow subtidal areas; the bivalve Gaimardia trapesina, from several macroalgae species in high energy locations in the shallow subtidal; and the isopod Limnoria stephenseni, from the floating fronds of the kelp Macrocystis pyrifera, which were located several hundred meters offshore. Test specimens were acclimated to laboratory conditions 24 h to 48 h prior to commencement of tests. Juvenile flatworms, isopods and gastropods were all products of reproduction in the laboratory at the AAD, and hence their approximate age at testing is known. The flatworms hatched from small (2 mm in diameter) brown eggs, laid on rocks or on the side of aquaria. The flatworms exhibited age based morphological differences; juvenile flatworms were light grey in colour, while the adults were black. The gastropods hatched from small (1 mm in diameter) translucent eggs laid on weed, often in a cluster. For flatworms and gastropods, juveniles were not all the same age at testing due to differing hatching times, with ages ranging from 2 weeks to 3 months. In contrast, juvenile isopods were all the same age. Although brooding isopods were not observed, juveniles were noticed during routine feeding, thus were likely within 2-3 days of being released, 6 months after adults were brought from the field to the aquarium. The tests with these juvenile isopods were done within 1 week of their being observed. Care was taken to collect adults from the field, for each species, within a narrow size range to minimise differences in ages between individuals tested (Table 1). However, ages of adults individuals used in tests are unknown. The smaller size class of bivalves tested (juveniles: 2.5 plus or minus 0.5 mm, Table 1) was also collected from the field along with the adults (8.0 plus or minus 1.0 mm, Table 1). Based on knowledge on the growth rate of this species (0.8 mm per year; Everson [26], the smaller size class likely represents a young adult of approximately 2.5 to 4 y old, as opposed to a juvenile stage, and adults collected were approximately 9 to 11 y old. Toxicity tests A static non-renewal test regime was used for all tests. Two replicate tests were done for each species at each life stage, with the exception of the juvenile isopods, where due to the limited number of individuals available, only one test was done. Longer tests durations of 14 days were done for acute responses due to the longer life span and response to contaminants compared to temperate and tropical species as determined in previous studies [7, 27]. All experimental vials and glassware were washed in 10% nitric acid and rinsed thoroughly with MilliQ water three times before use. Tests were done in lidded polyethylene vials of varying sizes, depending on the size and number of individuals in the test (Table 1). Water was not aerated as DO stayed relatively high for tests due to high dissolution rates in cold water. Acid washed and Milli-Q rinsed mesh (600 micron nylon) was provided for isopods to rest on, while no structure was added to vials for the other test species. Test solutions were prepared 24 h prior to the addition of invertebrates. Five copper concentrations in seawater were prepared using a 500 mg/L Univar analytical grade CuSO4 in MilliQ stock solution, plus a control for each test. Seawater was filtered to 0.45 microns, and water quality parameters were measured using a TPS 90-FL multimeter at the start (d 0) and end (d 14) of tests. Dissolved oxygen (DO) was greater than 80% saturation, salinity was 33 to 35 ppt, and pH was 8.1 to 8.3 at the start of tests. Tests were kept in controlled temperature cabinets set at 6 degrees C under 16:8h light:dark during the summer, and 12:12 for tests during the rest of the year (light intensity of 2360 lux). Temperatures within cabinets were monitored throughout the test using Thermochron iButton data loggers. Water samples of each test concentration were taken at the start (day 0) and end of tests (day 14). Samples were filtered through an acid and Milli-Q rinsed, 0.45 microns Minisart syringe filter and acidified with 1% ultra-pure nitric acid before being analysed by ICP-OES to determine dissolved metal concentrations. Measured concentrations at the start of tests were within 96% of nominal target concentrations. Averages between measured concentrations at the start and end of tests were made to estimate exposure concentrations, which were subsequently used in statistical analyses to determine point estimates (Table 2). Both survival and sublethal (behavioural) endpoints were used to determine sensitivity to copper. Vials were checked daily and survival and sublethal responses were observed and recorded on days 1, 2, 4, 7, 10 and 14. Tests were terminated when surviving individuals occurred in less than two concentrations, which was generally at 14 d for all species except for bivalves, in which this occurred sooner (7 to 10 d). Gastropods were scored as dead when their operculum was open and there was no response to stimulus (touch of a probe) on the operculum. Flatworms were scored as dead when there was no movement. Bivalves was scored as dead when there was no movement and when the shells were gaping open due to dysfunctional adductor muscles. Isopods were scored as dead when there was no movement of any appendages. The behavioural endpoint scored for each species was attachment, which indicated healthy and active individuals. For gastropods, this meant the foot was fully extended and attached to experimental vials; for flatworms, the whole body was able to attach (as those affected by copper appeared slightly contracted and could not lie flat); for bivalves, the byssal threads were used to fix individuals to the bottom of the vial, with the siphon also visible and shell slightly open for water exchange; and for isopods, individuals were either holding onto the provided mesh or were swimming, in which case they often reattached to the mesh during observation.

  • The heavy metal content of whole Paramoera walkeri (Eusiridae, Amphipoda) were measured from specimens collected and deployed in experimental mesocosms around Casey station during the summer of 2003/04. Data are the parts per million (ppm) concentrations of 45 heavy metals measured via acid digestion and ICP-MS analysis. P.walkeri were collected from an intertidal area on the northern side of O'Brien Bay and deployed in mesocosms (perforated sample jars housed within perforated 20 litre food buckets) suspended approximately three metres below the sea ice at four sites; two potentially impacted sites in Brown Bay and two control sites, O'Brien Bay and McGrady Cove. The experiment was run on three occasions during the summer each lasting two weeks. These data were collected as part of ASAC project 2201 (ASAC_2201 - Natural variability and human induced change in Antarctic nearshore marine benthic communities). See also other metadata records by Glenn Johnstone for related information.

  • 1. In situ chlorophyll fluorescence measurements using pulse amplitude technique (PAM) of macroalga Desmarestia menziesii, assessing adaptation to high light exposure after sea ice breakout, and impact of Thala Valley tip wastes. 2. In situ chlorophyll fluorescence measurements using pulse amplitude technique (PAM) of sediment diatom material assessing adaptation to high light exposure after sea ice breakout, and impact of Thala Valley tip wastes. 3. In situ chlorophyll fluorescence measurements using pulse amplitude technique (PAM) of sponge Latrunculia decipiens assessing adaptation to high light exposure after sea ice breakout. 4. Ecotoxicological experiments where Desmarestia menziesii was exposed to copper in indoor aquaria, aim to determine EC50, NOEC, LOEC for copper. 5. Field collections of various macroalgae for stable isotope analysis: for determination of physiological mechanisms. 6. Field collections of sponge and diatom material for pigment analysis.

  • Sediment cores (5cm diameter x 10cm deep), collected as part of the long-term monitoring of the Thala Valley waste disposal site clean-up (Casey station), were sectioned and a portion of each core analysed for a range of heavy metals. Metals were extracted from the sediment via a 4 hour 1M HCl acid extraction. Concentrations were gained from ICP-MS analysis of the resulting extracts (ICP-MS conducted at the School of Chemistry, University of Tasmania). Cores were collected from various control and potentially impacted sites in the Windmill Islands around Casey station. This work was conducted as part of ASAC 2201 (ASAC_2201).

  • These data sets describe the toxicity of lead, coppyer, zinc and cadmium spiked seawater to the juveniles of Abatus ingens and Abatus nimrodi. Metals were tested separately over exposure periods of 96 and 240 hours. The experimental endpoint was mortality as defined by cessation of observable movement. The coding system for the data files is J(juvenile)_An (Abatus nimrodi) or Ai (Abatus ingens) - Metal name_Dates of the experiment_ the period of the observation (96 hour or 240 hour). This work falls under the umbrella project ASAC_2201. The fields in this dataset are: Species Toxicant Date Replicate Concentration Moving pH Salinity Dissolved Oxygen