Keyword

EARTH SCIENCE > BIOSPHERE > ECOLOGICAL DYNAMICS > ECOTOXICOLOGY > SPECIES BIOACCUMULATION

14 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 14
  • Aerial photography (35mm film) of penguin colonies was acquired over the Steinnes Group (Eric Woehler). The penguin colonies were traced, then digitised (John Cox), and saved as DXF-files. Using the ArcView extension 'Register and Transform' (Tom Velthuis), The DXF-files were brought into a GIS and transformed to the appropriate islands.

  • Aerial photography (Linhof) of penguin colonies was acquired over the Windmill Islands (Eric Woehler). The penguin colonies were traced, then digitised (John Cox), and saved as DXF-files. Using the ArcView extension 'Register and Transform' (Tom Velthuis), The DXF-files were brought into a GIS and transformed to the appropriate islands. Data conforms to SCAR Feature Catalogue which can be searched (refer to link below).

  • This data describes the cellular metal concentrations of Phaeocystis antarctica and Cryothecomonas armigera following exposure to metals singly and in mixtures in laboratory studies. Microalgae were cultured in 80 mL of filtered (less than 0.45 um) seawater and low concentrations of nutrients supplemented with metal stocks to give a range of single and mixture exposures to the metals cadmium, copper, nickel, lead, and zinc. The cellular accumulation and partitioning are used to explain the metal's toxicity (cellular metal fractions are compared to the toxicity data provided in 10.4225/15/5ae93ff723ff8) and assess the risk bioaccumulation of metals to Antarctic marine microalgae may pose in the Southern Ocean food web.

  • Aerial photography (Linhof) of penguin colonies was acquired over the Svenner Islands (Eric Woehler). The penguin colonies were traced, then digitised (John Cox), and saved as DXF-files. Using the ArcView extension 'Register and Transform' (Tom Velthuis), the DXF-files were brought into a GIS and transformed to the appropriate islands.

  • Aerial photography (35mm film) of penguin colonies was acquired over some islands north east of Brattstrand Bluff islands (Eric Woehler). The penguin colonies were traced, then digitised (John Cox), and saved as DXF-files. Using the ArcView extension 'Register and Transform' (Tom Velthuis), The DXF-files were brought into a GIS and transformed to the appropriate islands. Update May 2015 - This dataset has been rename from "Brattstrand Bluff penguin GIS dataset" to "Islands NE of Brattstrand Bluff penguin GIS dataset" to better describe the location of the colonies. The penguin colonies are on a small group of islands approximately 12km north east of Brattstrand Bluff. Latitude 69.148 south and longitude 77.268 east. The Data Centre does not have a copy of the original photographs or described GIS data. In May 2015, the Data Centre has attached the following to this record: The DXF file produced by John Cox by digitising the aerial photography. Note this document is not georeferenced. Four photographs taken in 2009 by Barbara Wienecke, Seabird Ecologist, showing penguin colonies on these islands. A shapefile exists of the digitised colonies. The digitising by Ursula Harris, Australian Antarctic Data Centre, was done by georeferencing the DXF drawing over unprocessed Quickbird Image 05NOV15042413-M1BS-052187281010_01_P002. It was done in two parts, the largest island and then the two smaller islands. This allowed for better matching. The accuracy of this data is unknown.

  • Aerial photography (Linhof) of penguin colonies was acquired over the Holme Bay (Eric Woehler). The penguin colonies were traced, then digitised (John Cox), and saved as DXF-files. Using the ArcView extension 'Register and Transform' (Tom Velthuis), The DXF-files were brought into a GIS and transformed to the appropriate islands. Data conforms to SCAR Feature Catalogue which can be searched (refer to link below).

  • This metadata record contains the results of bioassays conducted to characterise the response of Antarctic nearshore marine invertebrates to hydrocarbon contaminants in fuels commonly used in Antarctica. AAS Project 3054. The results of Season 2 and Season 3 amphipod tests are in this dataset. Ecotoxicological bioassays were conducted at Davis and Casey Stations in 2009/10, 2010/11 and 2011/12 summer seasons to test the sensitivity of marine invertebrates to fuels in seawater. The three fuel types used in this project were: Special Antarctic Blend diesel (SAB), Marine Gas Oil diesel (MGO) and an intermediate grade (180) of marine bunker Fuel Oil (IFO). Test treatments were obtained by experimentally mixing fuel and seawater in temperature control cabinets at -1 degrees C to prepare a mixture of fuel hydrocarbons in filtered seawater (FSW) termed the Water Accommodated Fraction (WAF). WAF was produced by adding fuel to seawater in 5 L or 10 L Pyrex glass bottles using a ratio of 1:25 Fuel : FSW. This mixture was stirred at slow speed with minimal vortex for 18 h on a magnetic stirrer. The mixture was settled for 6 h before the water portion was drawn from beneath the fuel. This dataset contains the results of ecotoxicological bioassays with near-shore marine amphipod species exposed to WAFs of SAB WAF, MGO WAF and IFO WAF (specified above). Experimental treatments consisted of undiluted 100% WAF and dilutions of 10% and 1% of WAFs in FSW, to test the toxicity of water accommodated fractions of these three fuels on Antarctic marine invertebrates. The majority of experiments tested WAFs of each of the three fuels, although one tested SAB only due to limited supply of test organisms. Bioassays were conducted in open vessels (glass jars or beakers) in temperature controlled cabinets. Mortality and/or sub-lethal effects were observed at endpoints of 24 h, 48 h, 96 h, 7 d, 8 d, 10 d, 12 d, 14 d, 16 d and 21 d. New WAF solutions were prepared at 4 d intervals to replenish the experimental treatments. Deionised water was added to test solutions as required to maintain test solution volume and salinity. Water quality data was collected at each water change. Hydrocarbon concentrations in WAFs were determined from replicate experiments to measure THC in WAFs over time (Dataset AAS_3054_THC_WAF). WAF exposure concentrations for each bioassay endpoint were derived from these hydrocarbon tests. An integrated concentration was calculated from measured hydrocarbon concentrations weighted to time. Calculations account for depletion of hydrocarbons from test treatments and any renewal of treatments. These integrated THC concentrations for endpoints from 24h to 21d are contained in dataset AAS_3054_THC_WAF_integ_conc_10_11_12. This dataset consists of Excel spreadsheets. The file name code for invertebrate bioassays is; Project number_Season_Taxa_Test name Eg AAS_3054_10_11_amphipod_2PWA1 Project number : AAS_3054 Season : 2010/11 season Taxa: amphipod Test name:2 for Season 2, PW for genus and species, A for adult, 1 for Test 1 Bioassay spreadsheets contain the results of bioassays for a species. Where replicate tests were conducted, each experiment is on a separate spreadsheet. The worksheet labelled "Test conditions" shows details of Test name, dates, animal collection details, laboratory holding conditions, details of water accommodated fractions (WAF), bioassay conditions, scoring criteria and water quality data. The worksheet labelled "Counts" has columns for Replicate number and columns with the Score for all the animals in that replicate at every time endpoint. A full description of the scoring criteria is on the "Test conditions" worksheet. Totals, means and standard deviations are calculated for each treatment. The worksheet labelled "Totals, means, percent, StDev" has calculations of Survival, Unaffected, including mean and standard deviation, Percent Survival and Unaffected including means and standard deviation. Also included is column for the Total number of moults in each treatment. During the research to obtain early life stages of invertebrates for experiments, the number of Paramoera walkeri amphipod neonates per female, the timing of their release from the brood pouch and their early growth rate were recorded. These data are also included in AAS_3054_10_11_PW_neonates Samples were collected from: Ellis Narrows, Vestfold Hills Airport Beach, Davis, Vestfold Hills Prydz Bay, Davis (Between Anchorage Island and Bluff Island) Bailey Peninsula, Windmill Islands

  • The heavy metal content of whole Paramoera walkeri (Eusiridae, Amphipoda) were measured from specimens collected and deployed in experimental mesocosms around Casey station during the summer of 2003/04. Data are the parts per million (ppm) concentrations of 45 heavy metals measured via acid digestion and ICP-MS analysis. P.walkeri were collected from an intertidal area on the northern side of O'Brien Bay and deployed in mesocosms (perforated sample jars housed within perforated 20 litre food buckets) suspended approximately three metres below the sea ice at four sites; two potentially impacted sites in Brown Bay and two control sites, O'Brien Bay and McGrady Cove. The experiment was run on three occasions during the summer each lasting two weeks. These data were collected as part of ASAC project 2201 (ASAC_2201 - Natural variability and human induced change in Antarctic nearshore marine benthic communities). See also other metadata records by Glenn Johnstone for related information.

  • Aerial photography (Linhof) of penguin colonies was acquired over the Vestfold Hills (Eric Woehler). The penguin colonies were traced, then digitised (John Cox), and saved as DXF-files. Using the ArcView extension 'Register and Transform' (Tom Velthuis), The DXF-files were brought into a GIS and transformed to the appropriate islands.

  • We investigated the toxicity of copper, zinc and cadmium to the following taxa: copepods Tigriopus angulatus (Lang) and Harpacticus sp. (Order Harpacticoida, Family Harpacticidae); flatworm Obrimoposthia ohlini (Bergendal) (Order Seriata, Family Procerodidae); bivalve Gaimardia trapesina (Lamarck) (Order Veneroida, Family Gaimardiidae); sea cucumber Pseudopsolus macquariensis (Dendy) (Order Dendrochirotida, Family Cucumriidae); sea star Anasterias directa (Koeler) (Order Forcipulatida, Family Asteriidae). Sites chosen for the collection of invertebrates for this study were free of obvious signs of metal contamination, as verified by the analysis of seawater samples from collection sites by inductively coupled plasma optical emission spectrometry (ICP-OES). Six invertebrate species were selected for toxicity tests to represent a range of taxa and ecological niches. Individuals of the copepod Tigriopus angulatus were collected using fine mesh dip nets from rock pools high on the intertidal zone. Individuals of the flatworm Obrimoposthia ohlini were collected from the undersides of boulders, high in the intertidal zone. The copepod Harpacticus sp. and bivalve Gaimardia trapesina were collected from several macroalgae species at high energy locations in the intertidal zone. Individuals of the sea cucumber Pseudopsolus macquariensis were collected from rocks from high energy locations from the intertidal to subtidal zones. Juveniles of the sea star Anasterias directa were collected from rocks in deep pools, low in the intertidal zone. All experimental tests using O. ohlini, T. angulatus, P. macquariensis and A. directa were conducted at the AAD Kingston laboratories, while some tests with Harpacticus sp. and all tests with G. trapesina were conducted in the laboratory facilities on Macquarie Island. Adult life-stages were tested for all species except for P. macquairensis and A. directa in which juvenile stages were tested. Psedopsolus macquariensis released eggs in the aquarium which developed into juveniles prior to being used in tests, and juvenile A. directa were collected from the field. Each test involved exposure to copper, zinc or cadmium solution under a static non-renewal test regime over 14 days. Five metal concentrations plus a control were used for each test, with 3-5 replicates of each concentration. Where possible, tests were replicated. Concentrations used in replicate tests sometimes varied, as species sensitivity information accrued in tests was used to optimise subsequent tests. Metal test solutions in seawater were prepared 24 hours prior to the addition of animals, using 500 micrograms/L CuSO4, 500 micrograms/L ZnCl2 and 500 micrograms/L Cd SO4 MilliQ stock solutions. Seawater was filtered to 0.45 microns and water quality parameters were measured using a TPS 90-FL multimeter at the start and end of tests. Dissolved oxygen (DO) was greater than 80% saturation, salinity 35 ppt plus or minus 0.5, and pH was ~8.1-8.3 at the start of tests. All experimental vials and glassware were acid washed with 10% nitric acid and rinsed with MilliQ three times before use. Metal concentrations were determined using ICP-OES; samples of test solutions were taken at the start (day 0) and end of tests (day 14), filtered through a 0.45 microns syringe filter and acidified with 1% ultra-pure nitric acid. Measured concentrations at the start of tests were within 96% of nominal concentrations. In order to estimate exposure concentrations, the measured concentrations at days 0 and 14 were averaged. Tests were conducted in lidded plastic vials of varying sizes, depending on the size and number of individuals in the test. For both copepod species, there were 10 individuals per 50 mL in 70 mL vials; for P. macquariensis there were 8 individuals per 50 mL in 70 mL vials; and for O. ohlini, A. directa and G. trapesina, 10 individuals per 100 mL in 120 mL vials. Tests were conducted under a light-dark regime (at 2360 lux) of 18:6h light:dark in summer, 12:12 for tests for the rest of the year. Tests were kept in controlled temperature cabinets set at 6 degrees C, and temperatures within cabinets were monitored throughout the test using data loggers. Vials were checked daily and survival recorded on days 1, 2, 4, 7, 10 and 14. Individuals were considered dead, and removed from test vials, when for G. trapesina adductor muscles no longer closed shell; O. ohlini were inactive and covered in mucous; P. macquariensis and A. directa tube feet were no longer moving; T. angulatus and Harpacticus sp. urosomes were perpendicular to prosomes. Data are provided in a series of excel workbooks; one workbook per test species.