EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > ANIMALS/VERTEBRATES > MAMMALS > CETACEANS > TOOTHED WHALES
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
This dataset contains digitized passive acoustic recordings from a hydrophone connected to an autonomous recording device both moored near the sea-floor in the Southern Ocean. Recordings were digitised at a sample rate of 500 Hz and were continuous over the period of operation. The intended purpose of these recordings was to collect baseline data on the acoustic environment (i.e. underwater sound fields). Underwater sounds that were recorded include sounds generated by Antarctic sea ice, marine mammals, and man-made sounds from ships and geo-acoustic surveys. Marine mammal sounds include calls from blue, fin, humpback, and minke whales. The hydrophone was deployed on a mooring on the Kerguelen Plateau.
-
A spreadsheet detailing the filenames of the best left and/or right photos of blue whales photographed and individually identified during the Antarctic blue whale voyage 2013. The 'best' photos are also included as jpegs. See http://www.marinemammals.gov.au/sorp/antarctic-blue-whale-project for further detail regarding the Antarctic blue whale voyage.
-
This is a scanned copy of the annual report on vertebrate biology at Macquarie Island, 1990, by Rupert Woods. The scanned report contains information on: - Elephant seal census - Elephant seal tagging program (1984-1985, 1987-1991) - Freeze branding - Weaner weights - Anaesthetics - Gastric lavage - Opthalmology problems - Penguin crush (mass deaths of King Penguins) - PTTs and TDTRs - Toxoplasmosis - Morbilivirus - DNA samples (elephant seals and fur seals) - Anaesthesia and surgery of birds - Details of a neo-natal longfinned pilot whale washed ashore - Fur seals (census, euthanasia, injuries, net entanglements) - Letters - Abandoned elephant seal pup - Drift cards - Killer whale attack
-
This dataset contains digitized passive acoustic recordings from a hydrophone connected to an autonomous recording device both moored near the sea-floor in the Southern Ocean. Recordings were digitised at a sample rate of 500 Hz and were continuous over the period of operation. The intended purpose of these recordings was to collect baseline data on the acoustic environment (i.e. underwater sound fields). Underwater sounds that were recorded include sounds generated by Antarctic sea ice, marine mammals, and man-made sounds from ships and geo-acoustic surveys. Marine mammal sounds include calls from blue, fin, humpback, and minke whales. The hydrophone was deployed on a mooring on the Kerguelen Plateau in 2006.
-
This dataset contains digitized passive acoustic recordings from a hydrophone connected to an autonomous recording device both moored near the sea-floor in the Southern Ocean. Recordings were digitised at a sample rate of 500 Hz and were continuous over the period of operation. The intended purpose of these recordings was to collect baseline data on the acoustic environment (i.e. underwater sound fields). Underwater sounds that were recorded include sounds generated by Antarctic sea ice, marine mammals, and man-made sounds from ships and geo-acoustic surveys. Marine mammal sounds include calls from blue, fin, humpback, and minke whales. The data were collected in 2006 from a hydrophone deployed on a mooring in the Prydz Bay area.
-
During the 2013 Antarctic Blue Whale Voyage Acousticians noted all whale calls and other acoustic events that were detected during real-time monitoring in a Sonobuoy Event Log. The acoustic tracking software, difarBSM, stored processed bearings from acoustic events and cross bearings in tab delimited text files. Each event was assigned a classification by the acoustician, and events for each classification were stored in separate text files. The first row in each file contains the column headers, and the content of each column is as follows: buoyID: Buoy ID number is the number of the sonobuoy on which this event was detected. This can be used as a foreign key to link to the sonobuoy deployment log. timeStamp_matlabDatenum: Date and time (UTC) at the start of the event represented as a Matlab datenum (i.e. number of days since Jan 0 0000). Latitude: Latitude of the sonobuoy deployment in decimal degrees. Southern hemisphere latitudes should be negative. Longitude: Longitude of sonobuoy deployment in decimal degrees. Western hemisphere longitudes should be negative. Altitude: Depth of the sonobuoy deployment in metres. For DIFAR sonobuoys either 30, 120 or 300. magneticVariation_degrees: The estimated magnetic variation of the sonobuoy in degrees at the time of the event. Positive declination is East, negative is West. At the start of a recording this will be entered from a chart. As the recording progresses, this should be updated by measuring the bearing to the vessel. bearing_degreesMagnetic: Magnetic bearing in degrees from the sonobuoy to the acoustic event. Magnetic bearings were selected by the acoustician by choosing a single point on the bearing-frequency surface (AKA DIFARGram) produced by the analysis software difarBSM. frequency_Hz: The frequency in Hz of the magnetic bearing that the acoustician selected from the bearing-frequency surface (DIFARGram). logDifarPower: The base 10 logarithm of the height of the point on the DIFARGram receiveLevel_dB: This column contains an estimate of the The RMS receive level (dB SPL re 1 micro Pa) of the event. Received levels were estimated by applying a correction for the shaped sonobuoy frequency response, the receiver’s frequency response, and were calculated over only the frequency band specified in each classification (see below). soundType: soundType is the classification assigned to the event by the acoustician. Analysis parameters for each classification are included in the csv file classificationParameters.txt. The columns of this file are as follows: outFile: The name of the tab-separated text file that contains events for this classification. analysisType: A super-class describing the broad category of analysis parameters soundType: The name of the classification sampleRate: When events are processed, they are downsampled to this sample rate (in Hz) in order to make directional processing more efficient and precise FFTLength: The duration (in seconds) used for determining the size of the FFT during difar beamforming (i.e. creation of the DIFARGram). numFreqs: Not used during this voyage targetFreq: The midpoint of the frequency axis (in Hz) displayed in the DIFARGram Bandwidth: This describes the half-bandwidth (Hz) of the frequency axis of the DIFARGram. The frequency axis of the DIFARGram starts at targetFreq-bandwidth and ends at targetFreq + bandwidth frequencyBands_1: The lower frequency (Hz) used for determining RMS received level. frequencyBands_2: The upper frequency (Hz) used for determining RMS received level. preDetect: Duration of audio (in seconds) that will be loaded before the start of the event. The processed audio includes the time-bounds of the event marked by the acoustician as well as preDetect seconds before the start of the event. postDetect: Duration of audio (in seconds) that will be loaded after the end of the event. The processed audio includes the time-bounds of the event marked by the acoustician + postDetect seconds.
-
This dataset contains long-term underwater acoustic recordings made under Australian Antarctic Science Projects 4101 and 4102, and the International Whaling Commission’s Southern Ocean Research Partnership (IWC-SORP) Southern Ocean Hydrophone Network (SOHN). Calibrated measurements of sound pressure were made at several sites across several years using custom moored acoustic recorders (MARs) designed and manufactured by the Science Technical Support group of the Australian Antarctic Division. These moored acoustic recorders were designed to operate for year-long, deep-water, Antarctic deployments. Each moored acoustic recorder included a factory calibrated HTI 90-U hydrophone and workshop-calibrated frontend electronics (hydrophone preamplifier, bandpass filter, and analog-digital converter), and used solid state digital storage (SDHC) to reduce power consumption and mechanical self-noise (e.g. from hard-drives with motors and rotating disks). Electronics were placed in a glass instrumentation sphere rated to a depth of 6000 m, and the sphere was attached to a short mooring with nylon straps to decouple recorder and hydrophone from sea-bed. The hydrophone was mounted above the glass sphere with elastic connections to the mooring frame to reduce mechanical self-noise from movement of the hydrophone. The target noise floor of each recorder was below that expected for a quiet ocean at sea state zero. The analog-digital converter, based on an AD7683B chip, provides 100 dB of spurious free dynamic range, but a total signal-to-noise and distortion of 86 dB which yields 14 effective bits of dynamic range at a 1 kHz input frequency. The data for each recording site comprise a folder of 16-bit WAV audio files recorded at a nominal sample rate of 12 kHz. The names of each WAV file correspond to a deployment code followed by the start time (in UTC) of the file as determined by the microprocessor’s real-time clock e.g. 201_2013-12-25_13-00-00.wav would correspond to a wav file with deployment code 201 that starts at 1 pm on December 25th 2013 (UTC). Recording locations were chosen to correspond to sites used during AAS Project 2683. These sites were along the resupply routes for Australia’s Antarctic stations, and typically there was only one opportunity to recover and redeploy MARs each year.
-
This file contains a report of biological field work undertaken in the Casey region between July and August of 1976. It includes work done on seals and seabirds. The hard copy of the log has been archived by the Australian Antarctic Division library.
-
This dataset contains sporadic shore based observations of killer whales (Orcinus orca) from Macquarie Island from 1989 to 1998 (inclusive). The following data are included in the dataset: Date and time of observation (Australian Eastern Standard Time) The name of the observer The location of the observation (the beach or bay from which the observation was made). The latitude and longitude of the sighted animal (WGS84). The sex of the animal (M=Male, F=Female) (where available). Lifestage of the animal (where available). The observed individual count. Extra notes relating to the observation.
-
GPS data were recorded on the Sonobuoy Workstation as daily text files containing the raw NMEA 0183 sentences from an independent Garmin GPS receiver located at the acoustic workstation.