EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC CHEMISTRY > CARBON AND HYDROCARBON COMPOUNDS > ATMOSPHERIC CARBON DIOXIDE
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
During the ice stations, measurements of the air CO2, concentration for CO2 flux between sea ice and atmosphere were made with the chamber technique. Air-sea ice CO2 fluxes were measured over the sea ice with semi-automated chambers. Sample air from the chamber is passed through Teflon tubes connected to non-dispersive infrared (NDIR) analyzer (Model 800, LICOR Inc., USA) that was connected to a system controller and data logger (Model 10x, Campbell Scientific Inc., USA), that controls the opening/closing of the chambers as well. During the observation period, the CO2 flux was measured under three different conditions or surface types: (1) a chamber was installed above snow; (2) over the bare ice after removing the snow; (3) slush layer after removing the snow and slush crystals. The CO2 concentration in the chamber was measured every 5 s during experiments lasting 20 minutes for each chamber. A one hour cycle of measurements therefore consist of three 20 minute periods from each chamber (i.e. surface type). Data available: excel files containing sampling station name for each spreadsheet, dates, sampling time and air CO2 concentration as output voltage from NDIR (to indicated as ppm we need to calculate, but, not yet done this process) in the air and chamber for CO2 flux measurement. Also see the record - SIPEX_II_Gas_Flux
-
The embryonic development of Antarctic krill (Euphausia superba) is sensitive to elevated seawater CO2 levels. This data set provides the experimental data and WinBUGS code used to estimate hatch rates under experimental CO2 manipulation, as described by Kawaguchi et al. (2013). Kawaguchi S, Ishida A, King R, Raymond B, Waller N, Constable A, Nicol S, Wakita M, Ishimatsu A (2013) Risk maps for Antarctic krill under projected Southern Ocean acidification. Nature Climate Change (in press) Circumpolar pCO2 projection. To estimate oceanic pCO2 under the future CO2 elevated condition, we computed oceanic pCO2 using a three-dimensional ocean carbon cycle model developed for the Ocean Carbon-Cycle Model Intercomparison Project (2,3) and the projected atmospheric CO2 concentrations. The model used, referred to as the Institute for Global Change Research model in the Ocean Carbon-Cycle Model Intercomparison Project, was developed on the basis of that used in ref. 4 for the study of vertical fluxes of particulate organic matter and calcite. It is an offline carbon cycle model using physical variables such as advection and diffusion that are given by the general circulation model. The model was forced by the following four atmospheric CO2 emission scenarios and their extensions to year 2300. RCP8.5: high emission without any specific climate mitigation target; RCP6.0: medium-high emission; RCP 4.5: medium-low emission; and RCP 3.0-PD: low emission (1). Simulated perturbations in dissolved inorganic carbon relative to 1994 (the Global Ocean Data Analysis Project (GLODAP) reference year) were added to the modern dissolved inorganic carbon data in the GLODAP dataset (5). To estimate oceanic pCO2, temperature and salinity from the World Ocean Atlas data set (6) and alkalinity from the GLODAP data set were assumed to be constant. Marine ecosystems of the Southern Ocean are particularly vulnerable to ocean acidification. Antarctic krill (Euphausia superba; hereafter krill) is the key pelagic species of the region and its largest fishery resource. There is therefore concern about the combined effects of climate change, ocean acidification and an expanding fishery on krill and ultimately, their dependent predators—whales, seals and penguins. However, little is known about the sensitivity of krill to ocean acidification. Juvenile and adult krill are already exposed to variable seawater carbonate chemistry because they occupy a range of habitats and migrate both vertically and horizontally on a daily and seasonal basis. Moreover, krill eggs sink from the surface to hatch at 700–1,000m, where the carbon dioxide partial pressure (pCO2 ) in sea water is already greater than it is in the atmosphere. Krill eggs sink passively and so cannot avoid these conditions. Here we describe the sensitivity of krill egg hatch rates to increased CO2, and present a circumpolar risk map of krill hatching success under projected pCO2 levels. We find that important krill habitats of the Weddell Sea and the Haakon VII Sea to the east are likely to become high-risk areas for krill recruitment within a century. Furthermore, unless CO2 emissions are mitigated, the Southern Ocean krill population could collapse by 2300 with dire consequences for the entire ecosystem. The risk_maps folder contains the modelled risk maps for each of the climate change scenarios (i.e. Figure 4 in the main paper, and Figure S2 in the supplementary information). These are in ESRI gridded ASCII format, on a longitude-latitude grid with 1-degree resolution. Refs: 1. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213-241 (2011). 2. Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681-686 (2005). 3. Cao, L. et al. The role of ocean transport in the uptake of anthropogenic CO2. Biogeosciences 6, 375-390 (2009). 4. Yamanaka, Y. and Tajika, E. The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: Studies using an ocean biogeochemical general circulation model. Glob. Biogeochem. Cycles 10, 361-382 (1996). 5. Key, R. M. et al. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18, GB4031 (2004). 6. Conkright, M. E. et al. World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures CD-ROM Documentation (National Oceanographic Data Center, 2002).
-
Metadata record for data from AAS (ASAC) project 3046. Public The overall objective is to characterise the response of Southern Ocean calcareous zooplankton to ocean acidification resulting from anthropogenic CO2 emissions. Simulated increases in anthropogenic CO2 suggest a reduction in the calcification rates of calcareous organisms. A change in the calcification in the Southern Ocean may cause marine ecosystem shifts and in turn alter the capacity for the ocean to absorb CO2 from the atmosphere. We plan to take advantage of naturally-occurring, persistent, zonal variations in Southern Ocean primary production and biomass to investigate the effects of CO2 addition from anthropogenic sources on Southern Ocean calcareous zooplankton communities. A download file containing an excel spreadsheet of data can be found at the provided URL. Project objectives: The overall objective of this project is to characterise the impacts of recent, primarily anthropogenic, increases in atmospheric CO2 and related changes in the carbonate chemistry on shell formation by calcareous zooplankton in the Australian sector of the Southern Ocean. Calcareous zooplankton (e.g. planktonic foraminifera and pteropods) will be collected using plankton nets at five Southern Ocean localities during high seasonal flux periods. Planktonic foraminiferal and pteropod species and abundances, calcification rates and geochemistry (stable isotope and trace-metal) will be determined on plankton tow samples. Data from recent plankton tow samples will be compared with data deposited historically in the Southern Ocean and recovered from existing deep ocean sediment cores to provides insights about the extent to which modern carbon conditions may have already generated ecological impacts. The project will also provide a baseline of the present-day impact of ocean acidification and can be used to monitor the influence of future anthropogenic CO2 emissions in Southern Ocean ecosystems. Taken from the 2008-2009 Progress Report: Progress against objectives: Because of logistical delays to the Aurora Australis shipping schedule, ship time for this project was deferred to the 2009/2010 season. We have made progress in analysing other materials form previous voyages which will assist in the sampling design for the upcoming season. We are making good progress in planning the upcoming voyage currently scheduled for late 2009. Taken from the 2009-2010 Progress Report: Progress against objectives: Project scientists participated in Voyage 2 of the Aurora Australis, from Hobart to Casey Station in December 2009. Using the Rectangular Midwater Trawl we collected a total of eight plankton samples for examination of calcareous plankton distribution and shell characteristics in the summer Southern Ocean. We were targeting pteropods and planktonic foraminifera, two sets of calcifiers whose calcification response to ocean acidification we had previously reported on in publications in Nature Geoscience, Biogeosciences Discussions, and Deep-Sea Research Part II (in press). Project participants included collaborators from Australian National University and Scottish Natural Heritage, UK. There were low abundance of planktonic calclfiers in this particular seasons and sector, but we consider the initial collection a god start. Samples included approx. 18 pteropods; other samples are still being held by Biosecurity Australia and will be examined as soon as they are released. Other samples have already been sent to researchers at the Australian Institute of Marine Science for genetic (RNA) sequencing. This latter collaboration is a key one which will help answer questions about evolutionary responses to ocean acidification; if there are genotypes which are more or less vulnerable to acidification we may already be seeing selective pressure in the ecosystem and a change in the structure of assemblages as "winners" and "losers" are differentially affected by the impact.
-
Metadata record for data from ASAC Project 133 See the link below for public details on this project. Surface carbon dioxide (CO2) observations are integral to understanding the role of the Southern Ocean in the global carbon cycle, and to developing reliable predictions of biogeochemical responses to altered climatic conditions. Carbon dioxide (CO2) observations made in surface waters of the Australian sector of the Southern Ocean between the years 1991 and 2002 were used to estimate the seasonal variability in the fugacity of CO2 (fCO2) and net air-sea carbon fluxes. The results showed a net annual uptake of CO2 by the surface ocean over the entire region. The greatest seasonal uptake and lowest fCO2 values were observed in Spring/Summer in the sub-Antarctic zone (SAZ: 44 degrees S-50 degrees S) and in the Seasonal Sea-ice Zone (SIZ: south of 62 degrees S). The seasonal maximum in uptake for these regions is consistent with increased phytoplankton biomass and shoaling mixed layers over the Spring/Summer period. The High Nutrient Low Chlorophyll waters between 50 degrees S and 62 degrees S, also had maximum uptake in summer, but less compared to the SAZ and SIZ regions. Winter surface waters were close to or slightly above equilibrium, with respect to atmospheric CO2. The reduced uptake in winter appeared due to deeper mixing, lower biomass, and air-sea CO2 exchange. The highest fCO2 values in Winter were observed under or near the seasonal sea-ice where entrainment of deeper CO2-rich waters and ice cover would maintain high surface fCO2 values. The smallest seasonal amplitude in the surface fCO2 and net air-sea fluxes was found from 51 degrees S to 54 degrees S, a region on the southern edge of the SAZ and between the North sub-Antarctic Front and North Polar Front. The uptake estimates derived from the data were in good agreement with the CO2 flux climatology of Takahashi (2002), except in the SAZ and SIZ where we observed greater and less uptake, respectively. Data for this project are available for download - the dataset consists of a data files, and some excel files, which provide further information about each data file (cruise, dates, etc). Furthermore, the column headings used in the data files are as follows: Cruise - name of the cruise which collected the data Date - UTC Time - in UTC Latitude - decimal Longitude - decimal Sst - Sea Surface Temperature in degrees C Teq - Temperature of surface water at which the CO2 measurement is made. Sal - Salinity Patm - atmospheric pressure in hectopascals Shipspd - ship speed in knots Windspd - wind speed in knots Winddir - wind direction in degrees xCO2 - Mole fraction of CO2 in air (dry) equilibrated with surface water and at equilibrator water temperature xCO2air - Mole fraction of CO2 in atmosphere, dry pCO2 - partial pressure of carbon dioxide in surface water
-
This metadata record is a 'Parent' metadata record for ASAC project 2720. See the link for the related 'Child' metadata records. The overall objective is to characterise Southern Ocean marine ecosystems, their influence on carbon dioxide exchange with the atmosphere and the deep ocean, and their sensitivity to past and future global change including climate warming, ocean stratification, and ocean acidification from anthropogenic CO2 emissions. In particular we plan to take advantage of naturally-occurring, persistent, zonal variations in Southern Ocean primary production and biomass in the Australian Sector to investigate the effects of iron addition from natural sources, and CO2 addition from anthropogenic sources, on Southern Ocean plankton communities of differing initial structure and composition. SAZ-SENSE is a study of the sensitivity of Sub-Antarctic Zone waters to global change. A 32-day oceanographic voyage onboard Australia's ice-breaker Aurora Australis was undertaken in mid-summer (Jan 17 - Feb. 20) 2007 to examine microbial ecosystem structure and biogeochemical processes in SAZ waters west and east of Tasmania, and also in the Polar Frontal Zone south of the SAZ. The voyage brought together research teams from Australasia, Europe, and North America, and was led by the ACE CRC, CSIRO Marine and Atmospheric Research, and the Australian Antarctic Division. The overall goal is to understand the controls on Sub-Antarctic Zone productivity and carbon cycling, and to assess their sensitivity to climate change. The strategy is to compare low productivity waters west of Tasmania (areas with little phytoplankton) with higher productivity waters to the east, with a focus on the role of iron as a limiting micro-nutrient. The study also seeks to examine the effect of rising CO2 levels on phytoplankton - both via regional intercomparisons and incubation experiments. Available for download from this metadata record are various datasets collected from the voyage: - An image showing a map of the cruise track. - An excel document detailing hourly position checks of the ship. - An excel document detailing the event log for the voyage. - A word document detailing prospective papers produced from the voyage. Finally a link is available for users to access the special volume of publications produced as a result of this voyage.
-
The effect of pH, temperature and sperm concentration on the fertilisation of Sterechinus neumayeri was investigated. Adult Sterechinus neumayeri were collected from Ellis Fjord Narrows between December and January 2011-12 and held in the Ecotox Field Aquarium Module until used. Between 3-4 male and female individuals were spawned using 0.5M KCl and gametes were collected separately before being fertilised in treatment. The data set shows the percentage of fertilised and non-fertilised eggs of Sterechinus neumayeri scored at 20h post-fertilisation. Eggs were fertilised in various combinations of pH, temperature and sperm concentration treatments (pH: 8.0 (Control), 7.8 and 7.6; Temperature: 1 degrees C (Control), 3 degrees C and 5 degrees C; Sperm concentration (sperm:egg ratio): 1000:1 (Control), 750:1, 250: 1, 50:1 and 5:1). At 20h post fertilisation, 5 ml aliquot was removed from fertilisation vials and eggs were counted and determined if they were fertilised or not. Seawater parameters of treatments were measured at the start and end of the experiment. Detailed information of the spreadsheets are as follows: Seawater Parameters column headings: Temperature - measured in degrees C , shows the temperature treatments used pH - shows the pH levels used Subheading pH - pH level measured for the day using NIST certified buffers Subheading MV - pH level measured for the day in millivolts Subheading Total pH - total pH level in seawater obtained from MV measurements Subheading Temp - temperature of seawater measured for the day 1 deg C column headings: Experiment - number of experiments pH - shows the pH for each treatment Sperm Concentration - shows the sperm concentration used for each treatment in a egg:sperm ratio Rep - shows the number of replicates per experiment Unfertilised eggs - eggs without visible fertilisation envelope and no cleavage after 20h Fertilised eggs - eggs with visible fertilisation envelope and/or cleavage after 20h Fertilised deformed eggs - eggs with visible fertilisation envelope but deformed Total eggs - total eggs scored (whether fertilised or unfertilised) % Fertilised - fertilised eggs (deformed and non-deformed)/Total eggs 3 deg C and 5 deg C have the same column headings as 1 deg C. AAS3134 Abatus sp Growth Experiment Davis 2011-12: The effect of pH and temperature on the growth rate of juvenile Abatus ingens and Abatus shackletoni were investigated. Adult Abatus were collected off Airport Beach in waters 4-5m depth. Data set shows the growth rate of juveniles of Abatus ingens and Abatus shackletoni after a 4-week exposure to various combinations of pH and temperature. Juveniles of each species was removed from maternal pouches and photographed on the oral side before being exposed to combinations of pH (8.0 (Control), 7.8 and 7.6) and temperature (-1 degrees C (Control) and 1 degrees C) levels. They were incubated in treatments for 4 weeks before being removed and rephotographed. The lengths of 10 spines per juvenile were measured in the pre- and post-experiment photographs using ImageJ and the difference calculated to get a growth rate per juvenile. Seawater parameters of treatments were measured at the beginning of the experiment and subsequently once a day until the end of the experiment. Detailed information of the spreadsheets are as follows: A ingens (pre-exp) i.e. juvenile Abatus ingens spine lengths measured before exposure to experimental treatments. Column headings are: Spine number and length (mm): Length of each spine (1 - 10) measured per juvenile in mm. R1 - R12: Number of juveniles A ingens (post-exp) i.e. juvenile Abatus ingens spine lengths measured after 4-week exposure to experimental treatments. Column headings are identical to the above. A shackletoni (pre-exp) i.e. juvenile Abatus shackletoni spine lengths measured before exposure to experimental treatments. Column headings are identical to the above. A shackletoni (post-exp) i.e. juvenile Abatus shackletoni spine lengths measured after 4-week exposure to experimental treatments. Column headings are identical to the above. 2011-12 Aquarium pH and temp main headings show different treatment parameters. Column sub-headings are: Date - Date of measured seawater parameters Salinity - salinity of seawater measured Ppm - Amount of CO2 gas pumped into water recorded in parts per million pH - measured pH of seawater using NIST-certified buffers MV - pH of seawater recorded in millivolts Total pH - total pH of seawater derived from MV Temp - Temperature of seawater measured in degrees C.
-
Metadata record for data from ASAC Project 2720 See the link below for public details on this project. The overall objective is to characterize Southern Ocean marine ecosystems, their influence on carbon dioxide exchange with the atmosphere and the deep ocean, and their sensitivity to past and future global change including climate warming, ocean stratification, and ocean acidification from anthropogenic CO2 emissions. In particular we plan to take advantage of naturally-occurring, persistent, zonal variations in Southern Ocean primary production and biomass in the Australian Sector to investigate the effects of iron addition from natural sources, and CO2 addition from anthropogenic sources, on Southern Ocean plankton communities of differing initial structure and composition. These samples were collected on the SAZ-SENSE scientific voyage of the Australian Antarctic Program (Voyage 3 of the Aurora Australis, 2006-2007 season). SAZ-SENSE is a study of the sensitivity of Sub-Antarctic Zone waters to global change. A 32-day oceanographic voyage onboard Australia's ice-breaker Aurora Australis was undertaken in mid-summer (Jan 17 - Feb. 20) 2007 to examine microbial ecosystem structure and biogeochemical processes in SAZ waters west and east of Tasmania, and also in the Polar Frontal Zone south of the SAZ. The voyage brought together research teams from Australasia, Europe, and North America, and was led by the ACE CRC, CSIRO Marine and Atmospheric Research, and the Australian Antarctic Division. The overall goal is to understand the controls on Sub-Antarctic Zone productivity and carbon cycling, and to assess their sensitivity to climate change. The strategy is to compare low productivity waters west of Tasmania (areas with little phytoplankton) with higher productivity waters to the east, with a focus on the role of iron as a limiting micro-nutrient. The study also seeks to examine the effect of rising CO2 levels on phytoplankton - both via regional intercomparisons and incubation experiments. The data described in this metadata record are for seawater samples collected for HPLC pigments, microscopy and flow cytometry. Samples were collected either by Niskin Bottles (on a CTD), from the ocean surface with a bucket, or via a clean seawater line (at a depth of 7 metres), directly into the onboard laboratories. Samples for microscopy were examined either with an electron microscope, or a light microscope (lugol samples). The data are presented in an excel spreadsheet, available for download at the URL given below. The 'Notes' worksheet provides further information about the data contained in the spreadsheet, including a description of column headings, units used, etc. The fields used in this dataset are: Tube Label Site CTD Niskin bottle Depth (m) Date (UT) Start Time (UT) Stop Time (UT) Latitude Longitude Lugols Glutaraldehyde fixed samples Flow Coccolithophorids Volume HPLC Volume Turner Fluorometer reading (PAR) Photosynthetically Active Radiation Temperature (degrees C) Comment
-
---- Public Summary from Project ---- The Southern Ocean is one the most significant regions on earth for regulating the build up of anthropogenic CO2 in the atmosphere, and the capacity for carbon uptake in the region could be altered by climate change. The project aims to establish a time series of anthropogenic carbon accumulation. The work will be used to identify processes regulating the CO2 uptake and to test models that predict future uptake. 2001-2002 Season: Data collection for this project was solely carried out on voyage three of the 2001/2002 season. Total dissolved inorganic carbon (TCO2) and titration alkalinity (TA) measurements were made on the CLIVAR SR3 section between Hobart and Antarctica. The carbon samples were taken from a 24 bottle rosette and have an approximate horizontal resolution of 60nm with closer spacing in regions where horizontal gradients were large. Many of the stations sampled for carbon had multiple casts to improve vertical resolution. The CRM analyses were used to calibrate the titration cell volume. Preliminary analysis of Certified Reference Material (CRM) Seawater from Scripps Institution of Oceanography show data quality was generally good. For TCO2 the measurements on Batch 52 CRM's the average concentration was 2005.65 +/- 1.36 micromol/kg (n=65; 1 s.d.). For TA the average CRM values were 2224.76 +/- 1.17 micromol/kg (n=45, 1 s.d.). The certified values for Batch 52 was 2005.57 +/- 0.39 and 2224.72 +/- 0.81 micromol/kg for TCO2 and TA, respectively. The fields in this dataset follow standard WOCE naming practices. See the url given below for further details. The fields in this dataset are: EXPOCODE SECT_ID STNNBR CASTNO SAMPNO BTLNBR BTLNBR_FLAG_W DATE TIME LATITUDE LONGITUDE DEPTH CTDPRS CTDTMP CTDSAL CTDSAL_FLAG_W SALNTY SALNTY_FLAG_W CTDOXY CTDOXY_FLAG_W OXYGEN OXYGEN_FLAG_W SILCAT SILCAT_FLAG_W NITRAT NITRAT_FLAG_W PHSPHT PHSPHT_FLAG_W CFC-11 CFC-11_FLAG_W CFC-12 CFC-12_FLAG_W CFC113 CFC113_FLAG_W CCL4 CCL4_FLAG_W TCARBN TCARBN_FLAG_W ALKALI ALKALI_FLAG_W 2008-2009 Season: The Southern Ocean is a critical region on earth for taking up anthropogenic carbon dioxide (CO2) from the atmosphere. Over the past year, underway equipment has been used on a number of Aurora Australis voyages to estimate the air-sea exchange of CO2 and to characterise the variability in the exchange. The information is part of a large long term international effort to determine how much CO2 is being taken up by the ocean and to improve predictions of how the uptake and CO2 storage will change in future. An underway CO2 system was run on a number of voyages on Aurora Australis.