ACOUSTIC SOUNDERS
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
The RAN Australian Hydrographic Service conducted an airborne hydrographic survey LADSII at Macquarie Island, February to March 1999. The areas surveyed included the northern coast between Handspike Point and Garden Bay and an area in the vicinity of Judge and Clerk Islets north of Macquarie Island. The survey dataset, which includes metadata, was provided to the Australian Antarctic Data Centre by the Australian Hydrographic Office and is available for download from a Related URL in this metadata record. The survey was lead by M.J.Sinclair. These data are not suitable for navigation.
-
This dataset contains estimates of krill swarm characteristics from statistical models based on underway acoustic observations along with underway and remote-sensed environmental data. Estimates of internal swarm density and depth across the study region (60-80 degrees E) are included for the time of the survey (Feb 2006). Estimates of February internal swarm density across the broader East Antarctic region (30-120 degrees E) are also included for the period 2001-2010.
-
This data set contains depth sounding data (water depths) for Ellis Fjord, one of the fjords of the Vestfold Hills. The data were collected between 1994 and 1999. See the links in the related links section for copies of maps (PDF and TIFF) of Ellis Fjord soundings, sounding transects and bathymetric contours. Map 15623: Ellis Fjord, Vestfold Hills - Depth Soundings Map 15624: Ellis Fjord, Vestfold Hills - Sounding transects Map 15625: Ellis Fjord, Vestfold Hills - Sounding transects overlaying topography Map 15626: Ellis Fjord, Vestfold Hills - Transect coordinates and ground control Map 15627: Ellis Fjord, Vestfold Hills - Bathymetric Contours
-
The data processing was done by the Royal Australian Navy's (RAN) Deployable Geospatial Support Team (DGST) and was provided to the Australian Antarctic Data Centre by the Australian Hydrographic Office. The dataset is titled HI483A because the processing was done on a 2010/11 voyage to Mawson and HI 483 was going to be a RAN survey at Mawson. The RAN survey wasn't feasible because of sea ice. The data processed (12KHz EDO 323HP echo sounder data) was collected on the following voyages: 2006/07 V2, V4, V6 2007/08 SIP, V3, V6 2008/09 V0, V1, V2, V3, V5 2009/10 V0, V1, V2, V3, V4, V5, V7 2010/11 Trials, V1, V2, V3, VE2, VMS All voyage data sets were processed in the following manner. As the Aurora Australis sails from either Hobart, Tasmania or Fremantle, Western Australia all the shallow water data files containing depths less then 200m around these ports were not processed and deleted. If the sea floor image was too hard to determine during the voyage either parts of day lines were not processed or the whole line deleted depending on the quality of the data. This is evident with some day *.CSV files containing a second or third file, these files had the same file name and were given a end character of _2 or _3. Unfortunately the program Echoview is meant to allow the user to span gaps when processing a line but more often than not, this was not the case. So if there was a requirement to a have gap in the daily file then usually a second file was created. Regularly throughout all voyages files were observed that had no GPS data associated with the depths. Any raw files without GPS data could not be processed, all these files have been deleted. Occasionally corrupt files were experienced, and these corrupt files have also been deleted. When the Aurora Australis was at anchor off an Antarctic Station these files too were deleted. With the various problems with the raw data files, no voyage has complete sounding data for the whole voyage. Some voyages have large sections of data missing, but unfortunately this data was not able to processed due to one of the above factors. All soundings were processed utilising the spheroid, WGS84 and only geographic co-ordinates have been determined. UTM grid co-ordinates were not calculated during the processing stages due to software limitations. Grid co-ordinates were not calculated for the final HTF files. Scripts were developed to apply depth water corrections, tide offsets if shallower than 200m of water and the layback of the sounder with respect to the Ashtech GPS. The processing of the data from 2007/08 V3, 2007/08 V6 and 2010/11 V3 was incomplete. Complete processing of the data from these voyages was done as part of HI513 which is described by the metadata record with ID AAD_voyage_soundings_HI513. The data has not been through the verification process for use in charts.
-
During the K-Axis marine voyage from mid Jan-late Feb 2016, a diverse range of sampling techniques were employed to collect specimens and data. Each sampling event was recorded by scientists and technical support staff in a logbook that was kept in the operations room on board the Aurora Australis. This is a direct digital copy/transcription of the paper logbook. event_number: A unique event identifier in the log, in the order that the events were written down (usually but not always chronologically) event_type: The code defined and used by each research project to identify the types of equipment deployed or samples collected for an event. event_type_prefix: A non-mandatory prefix field used by some research projects to identify the type of an event event_type_number: A sequential number or alphanumeric-number combination defined and used by each research project to identify unique equipment deployment or sample collection events station_number: A universal (voyage-wide) station number used across all projects to identify a nominal lat/lon position defined during voyage planning leg: A nominally straight-line section of the voyage track defined during voyage planning. The voyage track was planned as a series of roughly N-S and E-W transects that intersected in some locations. Legs start at a station and continue through more stations to a vertex-station which is the start of the next leg. Legs are numbered consecutively. waypoint: A GPS waypoint used by Aurora Australis crew, AAD science technical support and researchers to identify target lat/lon positions in the voyage. Some waypoints correspond with station numbers. start_date_utc: The start date of the event in UTC start_time_utc: The start time of the event in UTC start_lat_deg: The latitude (whole degrees) of the vessel at the beginning of the event start_lat_min: The latitude (minutes) of the vessel at the beginning of the event start_lat_dec_deg: The latitude (decimal degrees) of the vessel at the beginning of the event start_lon_deg: The longitude (whole degrees) of the vessel at the beginning of the event start_lon_min: The longitude (minutes) of the vessel at the beginning of the event start_lon_dec_deg: The longitude (decimal degrees) of the vessel at the beginning of the event end_date_utc: The end date of the event in UTC end_time_utc: The end time of the event in UTC end_lat_deg: The latitude (whole degrees) of the vessel at the end of the event end_lat_min: The latitude (minutes) of the vessel at the end of the event end_lat_dec_deg: The latitude (decimal degrees) of the vessel at the end of the event end_lon_deg: The longitude (whole degrees) of the vessel at the end of the event end_lon_min: The longitude (minutes) of the vessel at the end of the event end_lon_dec_deg: The longitude (decimal degrees) of the vessel at the end of the event remarks: Comments/remarks written by researchers when completing the paper log transcribe_comments: Comments/remarks made by the transcriber when the log was digitised
-
The Kerguelen Axis voyage was planned to collect data to enhance the realism of end-to-end ecosystem models being developed in the Antarctic Climate and Ecosystems Cooperative Research Centre, to investigate the effects of climate change and ocean acidification on Southern Ocean ecosystems in the Indian Sector (particularly in relation to factors affecting the northern distribution of Antarctic krill) and to contribute to assessment of the spatial relationship of mesopelagic mid-trophic level species, in particular zooplanktivores, to foraging strategies by marine mammals and birds on the Kerguelen Plateau. Nine projects were undertaken aboard the Aurora Australis. Each project had individual objectives and outputs, and there are metadata records for each data set collected. They were designed to be complementary in order that the whole data set and project analyses could be used to address the objectives of the Kerguelen Axis program. Observations will be contributed to the Southern Ocean Observing System (SOOS) and will facilitate the design of future ecosystem observing in the region.
-
During the K-Axis marine voyage from mid Jan-late Feb 2016, a diverse range of sampling techniques were employed to collect specimens and data. Each sampling event was recorded by scientists and technical support staff in a logbook that was kept in the operations room on board the Aurora Australis. This is a PDF of the scanned original document, compiled on paper during the voyage. event_number: A unique event identifier in the log, in the order that the events were written down (usually but not always chronologically) event_type: The code defined and used by each research project to identify the types of equipment deployed or samples collected for an event. event_type_prefix: A non-mandatory prefix field used by some research projects to identify the type of an event event_type_number: A sequential number or alphanumeric-number combination defined and used by each research project to identify unique equipment deployment or sample collection events station_number: A universal (voyage-wide) station number used across all projects to identify a nominal lat/lon position defined during voyage planning leg: A nominally straight-line section of the voyage track defined during voyage planning. The voyage track was planned as a series of roughly N-S and E-W transects that intersected in some locations. Legs start at a station and continue through more stations to a vertex-station which is the start of the next leg. Legs are numbered consecutively. waypoint: A GPS waypoint used by Aurora Australis crew, AAD science technical support and researchers to identify target lat/lon positions in the voyage. Some waypoints correspond with station numbers. start_date_utc: The start date of the event in UTC start_time_utc: The start time of the event in UTC start_lat_deg: The latitude (whole degrees) of the vessel at the beginning of the event start_lat_min: The latitude (minutes) of the vessel at the beginning of the event start_lat_dec_deg: The latitude (decimal degrees) of the vessel at the beginning of the event start_lon_deg: The longitude (whole degrees) of the vessel at the beginning of the event start_lon_min: The longitude (minutes) of the vessel at the beginning of the event start_lon_dec_deg: The longitude (decimal degrees) of the vessel at the beginning of the event end_date_utc: The end date of the event in UTC end_time_utc: The end time of the event in UTC end_lat_deg: The latitude (whole degrees) of the vessel at the end of the event end_lat_min: The latitude (minutes) of the vessel at the end of the event end_lat_dec_deg: The latitude (decimal degrees) of the vessel at the end of the event end_lon_deg: The longitude (whole degrees) of the vessel at the end of the event end_lon_min: The longitude (minutes) of the vessel at the end of the event end_lon_dec_deg: The longitude (decimal degrees) of the vessel at the end of the event remarks: Comments/remarks written by researchers when completing the paper log
-
During the K-Axis marine voyage from mid Jan-late Feb 2016, a diverse range of sampling techniques were employed to collect specimens and data. Each sampling event was recorded by scientists and technical support staff in a logbook that was kept in the operations room on board the Aurora Australis. This is a direct digital transcription of the paper logbook with interpolated lat/lon from underway data to supplement start times as recorded in the log. The method used to obtain the supplementary position is described in the associated eventlog_matchup.html file. event_number: A unique event identifier in the log, in the order that the events were written down (usually but not always chronologically) event_type: The code defined and used by each research project to identify the types of equipment deployed or samples collected for an event. event_type_prefix: A non-mandatory prefix field used by some research projects to identify the type of an event event_type_number: A sequential number or alphanumeric-number combination defined and used by each research project to identify unique equipment deployment or sample collection events station_number: A universal (voyage-wide) station number used across all projects to identify a nominal lat/lon position defined during voyage planning leg: A nominally straight-line section of the voyage track defined during voyage planning. The voyage track was planned as a series of roughly N-S and E-W transects that intersected in some locations. Legs start at a station and continue through more stations to a vertex-station which is the start of the next leg. Legs are numbered consecutively. waypoint: A GPS waypoint used by Aurora Australis crew, AAD science technical support and researchers to identify target lat/lon positions in the voyage. Some waypoints correspond with station numbers. start_date_utc: The start date of the event in UTC start_time_utc: The start time of the event in UTC start_lat_deg: The latitude (whole degrees) of the vessel at the beginning of the event start_lat_min: The latitude (minutes) of the vessel at the beginning of the event start_lat_dec_deg: The latitude (decimal degrees) of the vessel at the beginning of the event start_lon_deg: The longitude (whole degrees) of the vessel at the beginning of the event start_lon_min: The longitude (minutes) of the vessel at the beginning of the event start_lon_dec_deg: The longitude (decimal degrees) of the vessel at the beginning of the event end_date_utc: The end date of the event in UTC end_time_utc: The end time of the event in UTC end_lat_deg: The latitude (whole degrees) of the vessel at the end of the event end_lat_min: The latitude (minutes) of the vessel at the end of the event end_lat_dec_deg: The latitude (decimal degrees) of the vessel at the end of the event end_lon_deg: The longitude (whole degrees) of the vessel at the end of the event end_lon_min: The longitude (minutes) of the vessel at the end of the event end_lon_dec_deg: The longitude (decimal degrees) of the vessel at the end of the event remarks: Comments/remarks written by researchers when completing the paper log transcribe_comments: Comments/remarks made by the transcriber when the log was digitised utc: The start date and time of the event in UTC start_lon_dec_deg_interp: The latitude (decimal degrees) of the vessel at the beginning of the event interpolated from the vessel underway data start_lat_dec_deg_interp: The longitude (decimal degrees) of the vessel at the beginning of the event interpolated from the vessel underway data
-
More than 50 scientists from eight countries conducted the Sea Ice Physics and Ecosystem eXperiment 2012 (SIPEX-2). The 2012 voyage built on information and observations collected in 2007, by re-visiting the study area at about 100-120 degrees East. This was the culmination of years of preparation for the Australian Antarctic Division and, more specifically, the ACE CRC sea-ice group who lead this international, multi-disciplinary, sea ice voyage to East Antarctica. Work began at the sea-ice edge and penetrated the pack ice towards the coastal land-fast ice. The purpose of SIPEX-2 was to investigate relationships between the physical sea-ice environment, marine biogeochemistry and the structure of Southern Ocean ecosystems. While the scientists and crew did not set foot on Antarctic terra firma, a number of multi-day research stations were set up on suitable sea ice floes, and a range of novel and state-of-the-art instruments were used. These included: A Remotely Operated Vehicle (ROV) to observe and film (with an on-board video camera) krill, and to quantify the distribution and amount of sea ice algae associated with ice floes. An Autonomous Underwater Vehicle (AUV) to study the three-dimensional under-ice topography of ice floes. Helicopter-borne instruments to measure snow and ice thickness, floe size and sea ice type. Instruments included a scanning laser altimeter, infrared radiometer, microwave radiometer, camera and GPS. Sea ice accelerometer buoys to measure sea ice wave interaction and its effect on floe-size distribution. Customised pumping systems and light-traps to catch krill from below the ice and on the sea floor. Available at the provided URL in this record, is a link to a file containing the locations of all ice stations from this voyage.